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Abstract
The objective of this study is twofold: (1) to investigate the factors that affect the success of university students 
by employing two artificial neural network methods (i.e., multilayer perceptron [MLP] and radial basis function 
[RBF]); and (2) to compare the effects of these methods on educational data in terms of predictive ability. The 
participants’ transcript scores were used as the target variables and the two methods were employed to test 
the predictors that affected these variables. The results show that the multilayer perceptron artificial neural 
network outperformed the radial basis artificial neural network in terms of predictive ability. Although the find-
ings suggest that research in quantitative educational science should be conducted by using the former artificial 
neural network method, additional supporting evidence needs to be collected in related studies.
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An intelligence system basically consists of three 
layers (i.e., input, output, and hidden), which 
contain built-in neurons that connect one layer to 
another. In a neural network, basic functions are 
inferred from the data, which allow the network to 
understand complex interactions between predictor 
variables (Gonzalez-Camacho et al., 2012; Hastie, 
Tibshirani, & Friedman, 2009). Artificial neural 
networks (ANNs) are computational models based 
on parallel distributed processing, which can be 
used to model highly complex and non-linear 
stochastic problems such as the ability to learn, 
generalize, classify, and organize data (Gomes & 
Awruch, 2004; Sharaf, Noureldin, Osman, & El-
Sheimy, 2005). ANNs can also be used to analyze 
complex data structures and large data sets, and 
these so-called intelligence systems are capable 
of generalizing the findings of scientific studies 
(Santos, Rupp, Bonzi, & Fileti, 2013). Inspired by 
the thinking patterns of the human brain, ANNs can 
“learn” the data structures and conduct numerous 
statistical processes such as parameter estimations, 
classifications, and optimizations. In other words, 
learning in ANNs is accomplished through 
algorithms that mimic the learning mechanisms of 
biological systems (Yılmaz & Özer, 2009). Therefore, 
the present study investigates the factors that affect 
the success of university students by employing two 
artificial neural network methods (i.e., multilayer 
perceptron and radial basis function), and compares 
the effects of these methods on educational data in 
terms of predictive ability.

Multilayer Perceptron Artificial Neural Network

The multilayer perceptron artificial neural network 
(MLPANN) and the radial basis function artificial 
neural network (RBFANN) are both widely used 
as supervised training methods. Although their 
structures are somewhat similar, the RBFANN 
is used to solve scientific problems, whereas the 
MLPANN is applied for pattern recognition or 
classification problems by using the error back 
propagation algorithm. The main purpose of 
this algorithm is to minimize estimation error by 
computing all of the weights in the network. In 
addition, this algorithm systematically updates 
these weights in order to achieve the best 
neural network configuration. Essentially, this 
algorithm consists of two steps: propagation and 
weight update. Basically, the propagation step 
involves forward propagations (producing output 
activations) and backward ones (computing the 

difference between input (Xi) and output (Yi) by 
using output activations). In the weight update 
process, synaptic weight is multiplied by the delta 
(Xi-Yi) to obtain the gradient weight. Then, a 
percentage of the gradient weight is subtracted to 
obtain the rate of pattern recognition. In this case, 
if the percentage is low, then the accuracy of the 
training is high. Moreover, if the percentage is high, 
then the training of the neurons is faster. During 
this process, the two steps (propagation and weight 
update) are repeated until the performance of the 
network architecture is satisfactory.

Back propagation needs to compute the derivative 
of the squared error function by considering the 
weights in the network. Assuming one output 
neuron, the squared error function can be 
computed as follows:

      (1)

where t is the target output, y is the actual output, 
and E is the squared error. Each output (Oj) that 
is matched with each neuron can be expressed as 
follows:

    (2)

The netj (input) to a neuron is the weighted sum of 
output Ok. In addition, wkj is the weight between 
neurons k and j. In general, the activation function 
of the hidden and output layers is non-linear and 
differentiable. A common activation function is 
shown as follows:

     (3)

The activation function in Equation 3 is a logistic 
form that is commonly used as the activation 
function. This process continues until the error is 
optimized. In other words, the back propagation 
algorithm attempts to find the derivative of the error. 

In feed-forward neural networks such as the 
MLPANN, the input layer includes a linear 
activation function, but sigmoid tangent, 
logarithmic, and hyperbolic activation functions 
(which are non-linear functions) are used in the 
hidden and output layers. A typical structure of a 
MLPANN is shown in Figure 1.
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In Figure 1, each input variable is calculated with 
the weight of w. The target variable (output), which 
is represented as y, can be expressed as follows:

,        (4)

where b is the bias associated with the neurons. In 
a MLPANN, hidden layers often include sigmoid 
neurons or hyperbolic functions that reveal the 
non-linear relationships between inputs and 
outputs. The training process and the computation 
of the neurons can be calculated as follows (Yılmaz 
& Özer, 2009):

     (5),

where wk-1
ip   is the connection weight between the ith 

neuron in the (k −1)th layer and the pth neuron in 
the kth layer, yp

k is the output of the pth neuron in 
the kth layer,  is the sigmoid activation function of 
the pth neuron in the kth layer, sgmp

k and βk
i is the 

threshold of the pth neuron in the kth layer (Kasiri, 
Momeni, & Kasiri, 2012). However, the sigmoid 
activation function is given as:

       (6)

Radial Basis Function Artificial Neural Network

The radial basis function artificial neural network 
(RBFANN) contains one significant advantage 
in which it can reveal non-linear relationships 
between independent and target parameters 
(Mustafa, Rezaur, Rahardjo, & Isa, 2012). Basically, 
the RBFANN was offered as an alternative to the 
MLPANN for analyzing complex models (Luo 
& Unbehauen, 1999) since it was shown that the 
RBFANN can be implemented with increased input 
dimensions (Wilamowski & Jaeger, 1996). The 
RBFANN includes two additional advantages: its 
training process is faster than the conventional back 
propagation neural network; and it more robust to 
the complex problems associated with active (non-
stationary) inputs (Chen, Zhao, Liang, & Mei, 2014). 

Similar to the structure of the other architectures, 
the RBFANN also includes three layers: input, 
hidden, and output. The output layer includes a 
linear form while the hidden layer is supported 
with a non-linear RBF activation function. The 
structure of the RBFANN is shown in Figure 2.

The input variables are the combination of the input 
vector x = [x1, x2,......xn]. These vectors are matched 
with the radial basis functions in each hidden node. 
In addition, vector y, which is a linear combination 
of the final output, is yielded (Chen et al., 2014) 
after which the y output can be obtained as follows:

,  (7)

Figure 1: The basic structure of a multilayer perceptron artificial neural network.
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where wi denotes connection weights between the 
hidden and output layers and w0 is the bias. The 
notations x1, x2,......xn represent the number of input 
nodes in the output layer, whereas Øi(x) is the radial 
function in the hidden layer and M is the total 
number of nodes in this layer. Basically, a radial 
basis function is a multi-dimensional function that 
describes the distance between a given input vector 
and a pre-defined center vector (Chen et al., 2014). 

In the related literature, various radial basis 
functions have been described and used depending 
on the data structure. The normalized Gaussian 
model is most commonly used (also in the present 
study) as the radial basis function (Mustafa et al., 
2012; Narendra, Sivapullaiah, Suresh, & Omkar, 
2006), which can be expressed as follows:

,       (8)

where μi and σi represent the center and spread 
width parameter of the basic function Øi. In 
addition, ,  is the norm of Euclidean distance 
and using the Gaussian function provides some 
advantages such as radial symmetry and improved 
smoothness.

In regard to using the Gaussian function, the 
output of the radial basis network yields the 
following equation:

      (9)

Basically, the training process of the RBFANN 
consists of three steps: 1) calculate the width σi; 2) 
adjust the center μi; and 3) adjust the weight wi. The 
two-step clustering algorithm is used to find the 
RBF center and width. In regard to fixing the width 
according to the spread of the centers, the radial 
basis function is:

,    (10)

where h is the number of centers and d is the 
maximum distance between the chosen centers. As 
a result

   (11)

Furthermore, the base function depends on the 
smaller value of d to obtain a smaller width in the 
RBFANN (Chen et al., 2014).

Figure 2: The basic structure of a radial basis function artificial neural network.

Bias
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Performance Criteria to Determine the Best 
Artificial Neural Network

In general, the purpose of indicators in an artificial 
neural network, such as the error function, is to 
examine the performance of its architecture. In 
RBF and MLP networks, the sum-of-squares error 
(SSE) is used as the error function, which can be 
expressed as follows:

,    (12)

where yj(xi) is the network output and tij is the 
target. In other words, training in RBF and MLP 
networks is achieved by minimizing the error 
function e. In addition, the error function is the 
squared difference between the predicted and the 
real (observed) data.

Not only is the SSE used as a network performance 
measurement but also the mean squared error 
(MSE), the root-mean-square error (RMSE), the 
mean absolute error (MAE), the coefficient of 
efficiency (CE), and the coefficient of correlation 
measurements are also used to determine the 
optimal architecture of a neural network. These 
measurements are defined as follows:

(13)

(14)

(15)

(16)

where, Pi and Qi are the predicted and the real data of 
the output variable, respectively. Moreover, PM  is the 
mean of predicted output, whereas N is the number 
of real data. The error can be calculated by using these 
values. Regarded as ideal, the values of MSE, RMSE, 
and MAE should be obtained as zero, whereas the 
CE should be computed as one (Mustafa et al., 2012). 
However, in practice, it is impossible to obtain the 
values of zero and one. The optimal architecture of a 
neural network depends on how much the MSE, the 
RMSE, and the MAE performance measurements 
are closer to zero or one for the CE.

Purpose

The purpose of this study is twofold: 1) to investigate 
the factors that affect the success of university 
students by employing two artificial neural network 
methods (i.e., multilayer perceptron and radial 
basis function); and 2) to compare the effects of 
these methods on educational data in terms of 
predictive ability. To date, such a comparison has 
not been previously conducted, which makes the 
findings of the present study even more appealing. 
The overall goal of this study is to foster researchers 
to employ these advanced methods in future 
quantitative educational studies. 

Methods

Material (Data Set)

In this study, the data was based on the transcript 
scores of 1,271 university students (858 female 
[67.5%] and 413 male [32.5%]). The mean age of 
the students was 20.89 (with a standard deviation 
of 2.05 years) and the mean transcript scores, 
which was output (y) in this study, was 2.69 (with 
a standard deviation of 0.43). The overall range of 

Table 1
The Descriptive Statistics of the Predictors

Inputs Categories Frequency %

Satisfaction with the department 1- Yes
2- No

999
272

78.6
21.4

Self-assessment of course attendance
1. I attend courses as much as possible
2. I use my periodic absence rights until the end of the course
3. I am never absent from courses that I like

894
195
182

70.3
15.3
14.4

Preferred study times 
1- Daytime
2- Nighttime
3- It does not matter

225
569
477

17.7
44.8
37.5

Efficient use of time 1- Yes
2- No

439
832

34.5
65.5

Planning before any tasks 1- Yes
2- No

1004
267

79
21

The contributions of friends on success
1- Positive contributions
2- Negative contributions
3- No effect

582
150
539

45.8
11.8
42.4
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the transcript scores was between 0 and 4. There 
were nine variables of which eight were the inputs 
of the architecture and one was the output of the 
model. The data was collected from prepared 
questionnaires in which some of the input variables 
were nominal (dichotomous or multinomial) and 
some were ordinal or continuous. The following 
were used as inputs of the neural network: gender; 
age; satisfaction with the department; self-
assessment of course attendance; preferred study 
times; efficient use of time; planning before any 
tasks; and the contributions of friends on success. It 
was found that the inputs did have an effect on the 
students’ scores after using the MLPANN and the 
RBFANN. The descriptive statistics of the inputs are 
presented in Table1.

As shown in Table 1, 78% of the students were 
satisfied with their departments and 70.3% 
were willing to attend courses as much possible. 
Regarding study times, 44.8% of the students 
preferred studying during the day while 37.5% did 
not have a preference. The majority (65.5%) felt 
that they did not use their time efficiently, but 79% 
did have a plan or schedule before beginning their 
tasks. Finally, 45.8% of the students believed that 
their friends positively contributed to their overall 
success. Thus, along with the other variables, this 
variable was added as a predictor in the neural 
network models.

Data Analysis

The feed-forward neural networks (the MLPANN 
and the RBFANN used herein) and the input 
vector of independent variable xi was related to 
the target variable (yi, transcript score), based on 
the framework in Figures 1 and 2. The architecture 
of the network was such that Pi

ı = (pi1, pi2…,pi8) 
contained values for eight input (independent) 
variables from individual i. Following Mackay 
(2008), for two layers (the hidden and output 
layers) of supervised learning in a feed-forward 
network, the mapping includes the following 
formulas for the relationship between output  and 
the independent variables:

Hiddenlayer 

Outputlayer 

In the activation function, the biases were computed 
and then the activation function was reapplied to 
the data in order to move the transformed function 
to the output layer. In other words, the transformed 

activation function yields the estimated target 
variable (the transcript score) (Okut, Gianola, Rosa, 
& Weigel, 2011): 

  (17)

In this study, the combination activation function 
(f) was used as follows: 

1) fhiddenlayer(.) = linear(.) and foutputlayer(.) = linear(.)

2) fhiddenlayer(.) = hyperbolictangent(.) and foutputlayer(.) 
= linear(.)

Furthermore, the MSE, the RMSE, the MAE, 
and the CE were used to compare the predictive 
ability of the MLPANN and the RBFANN. Before 
testing the neural network architecture, a multi-
collinearity test was conducted, which examined 
high intercorrelations or interassociations among 
the input variables. In addition, the variance 
inflation factor (VIF) was used to determine multi-
collinearity. If the value of the VIF is greater than 
10 or the tolerance value is less than 0.1, then there 
is a serious multi-collinearity problem among the 
predictors (Keller, El-Sheikh, Granger, & Buckhalt, 
2012). In the present study, the VIF values were 
between 1.026 and 1.059 and the tolerance values 
were between 0.944 and 0.990. These indicators 
show that there was no multi-collinearity problem 
among the predictors. 

In this study, 70% of the data was used for training 
and the remainder of the data (30%) was used 
for testing. Before analyzing the algorithms of 
the neural network, Gaussian normalization was 
performed using the data set. Both the MLPANN 
and the RBFANN were tested in the following order:

i) Maximum steps without a decrease in error is 1;

ii) Maximum training time is 15 minutes;

iii) Maximum training epochs is automatically 
computed;

iv) Minimum relative change in training error 
is 0.0001 and minimum relative change in 
training error ratio is 0.001.

Results

First, the MLPANN was applied to the data set. The 
input layer consists of eight predictors, the number 
of hidden layers is one, and the optimal number of 
units in the hidden layer (bias) is 10. The activation 
function of the hidden layer is hyperbolic tangent 
and the activation function of the output layer is 
identity. The identity function takes real-valued 
arguments and returns them unchanged. The error 
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function of the output layer is the sum-of-squares 
error (SSE) and error computations were based 
on the testing sample. The training time for the 
MLPANN was 94 seconds. 

In regard to applying the RBFANN to the data set, 
similar to the MLPANN, the number of hidden 
layers is one and the optimal number of units in the 
hidden layer (bias) is 10. The activation function of the 
hidden layer is softmax and the activation function 
of the output layer is identity. The softmax activation 
function in the hidden layer takes the vector of real-
valued arguments and transforms it into a vector 
whose elements fall in the range (0, 1) and sum to 1 
(Singh, Mittal, & Kahlon, 2013). The training time 
for the RBFANN was 2 minutes and 21 seconds. The 
results show that the process of the MLPANN was 
obviously better than the RBFANN in terms of training 
time. The model, obtained with the MLPANN and the 
RBFANN, is summarized in Table 2.

Table 2 shows that the correlation between the 
observed and predicted data in the MLPANN 
is higher than that of the RBFANN. The other 
performance indicators (MSE, RMSE, and MAE) 
should be close to zero and the CE should be close 
to one. According to the SSE criteria, the MLPANN 
obtained better results than the RBFANN. The values 
of MSE, RMSE, and MAE are acceptable since they 
are close to zero and there is no meaningful difference 
between the MLPANN and the RBFANN. It is known 

that the value of the CE should be one (as ideal) and 
theoretically, the value of CE should be between -∞ 
and 1. In this case, compared to the RBFANN, the 
CE value of the MLPANN is closer to 1. In other 
words, the predicted value obtained by the MLPANN 
is more reliable than that of the RBFANN. Thus, the 
performance of the MLPANN is more robust than the 
RBFANN in terms of correlation and CE. The findings 
of the performance criteria are shown in Figure 3.

According to the performance criteria, the 
architecture of the MLPANN should be taken into 
consideration. The reason being that the predictors 
that affect the target variables in the MLPANN 
architecture become less unbiased and more robust. 
The importance of the independent variables in the 
MLPANN architecture is shown in Table 3.

Table 3
Independent Variable Importance in the MLPANN Architecture

Predictors Importance Normalized 
Importance (%)

Age 0.218 100
Gender 0.200 92
Preferred study times 0.154 70.6
The contributions of 
friends on success 0.139 64

Efficient use of time 0.098 45.1
Satisfaction with the 
department 0.087 39.7

Self-assessment of course 
attendance 0.064 29.5

Planning before any tasks 0.040 18.2

Table 2
The Performance of the MLPANN and the RBFANN

Neural Network Architecture Relative Error SSE Correlation MSE RMSE MAE CE
MLP 0.839 145.534 0.421** 0.173 0.416 0.310 −2.568
RBF 0.884 191.845 0.349** 0.164 0.406 0.312 −6.654

**Correlation between the observed and predicted data is significant at the 0.01 level.

Figure 3: The Performance of the MLPANN and the RBFANN.
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Table 3 shows that the age predictor was the 
most effective variable with 100% normalized 
importance. The gender predictor was the second 
most effective variable with 92% normalized 
importance, while the predictor of preferred 
study times was the third highest at 70.6%. The 
contributions of friends on success variable were 
found to be moderately significant with 64% 
normalized importance. The predictors of efficient 
use of time, satisfaction with the department, 
and self-assessment of course attendance had 
lower significance with 45.1%, 39.7%, and 29.5% 
normalized importance, respectively. Finally, the 
least effective predictor was the planning before any 
tasks variable with 18.2% normalized importance. 

Overall, the results of the predictors in the MLPANN 
were more reliable than those of the RBFANN. In 
addition, the effects of the predictors between the 
two models differed, and the results of the RBFANN 
were more biased and less robust than those of the 
MLPANN. The importance of the independent 
variables in the RBFANN is shown in Table 4. 

Table 4
Independent Variable Importance in the RBFANN 
Architecture
Predictors Importance Normalized 

Importance (%)
Gender 0.270 100
Satisfaction with the 
department

0.207 76.5

Planning before any tasks 0.114 42.2
Self-assessment of course 
attendance

0.111 41.0

Preferred study times 0.103 38.2
Efficient use of time 0.083 30.8
The contributions of 
friends on success

0.082 30.4

Age 0.029 10.8

It was found that the age predictor was the least 
effective variable in the RBFANN, whereas it was 
the most effective variable in the MLPANN. In the 
RBFANN, the most effective variable was the gender 
predictor with 100% normalized importance. The 
second most effective predictor was the satisfaction 
with the department variable with 76% normalized 
importance. Although the third most effective 
variable was planning before any tasks, it was the 
least effective variable in the MLPANN. Finally, the 
self-assessment of course attendance, the efficient 
use of time, and the contributions of the friends 
predictors were computed with 41%, 38.2%, 30.8%, 
and 30.4% normalized importance, respectively. The 
results show that the MLPANN was more reliable 
on educational data due to non-linear relationships.

Conclusion and Discussion

The overall purpose of this study was to demonstrate 
the predictive abilities of the MLPANN and the 
RBFANN on educational data. The transcript scores 
of the sample of university students were used 
with two different feed-forward-based algorithms. 
Previous studies have shown that the predictive 
ability of the RBFANN was more effective than 
that of the MLPANN. Yılmaz and Özer (2009) 
proposed an artificial neural network-based pitch 
angle controller for wind turbines and found 
that the RBFANN outperformed the MLPANN. 
Bonanno, Capizzi, Graditi, Napoli, and Tina (2012) 
studied the electrical characteristics estimation of 
a photovoltaic module by using the RBFANN and 
the MLPANN comparatively. Their results showed 
that the RBFANN-based models achieved superior 
performance compared to the MLPANN. However, 
other studies have highlighted the advantages of 
using the RBFANN (Pontes, Paiva, Balestrassi, & 
Ferreira, 2012; Sideratos & Hatziargyriou, 2012; Wu 
& Liu, 2012; Yu, Xie, Paszczynski, & Wilamowski, 
2011; Zhou, Ma, Li, & Li, 2012). 

Although these aforementioned studies 
suggested that the RBFANN should be utilized in 
engineering research, some studies have shown 
that the performance of the MLPANN was better 
in engineering science. For example, in their 
study related to chemical engineering, Santos et 
al. (2013) tested the performance of the MLPANN 
and the RBFANN comparatively. According to 
their findings, the MLPANN outperformed the 
RBFANN. Nevertheless, the RBFANN is still 
suggested for engineering studies. 

The present paper has shown that the MLPANN 
outperformed the RBFANN in terms of predictive 
ability. In addition, if the data is gathered from 
individuals via questionnaires or other instruments, 
then the predictive ability of the MLPANN is 
more robust and less biased than the RBFANN 
due to non-linear relationships. Therefore, it 
recommended that studies in educational science 
should be carried out using the MLPANN (instead 
of the RBFANN) since higher correlations and 
fewer errors can occur. Furthermore, independent 
variables are more reliable and more robust in the 
MLPANN architecture, and its training time is 
generally shorter than the RBFANN architecture. 
Finally, although the findings suggest that research 
in quantitative educational science should be 
conducted by using the MLPANN, additional 
supporting evidence needs to be collected in related 
studies.
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