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Abstract
Students should learn mathematics with understanding. This is one of the ideas in the literature on 
mathematics education that everyone supports, from educational politicians to curriculum developers, from 
researchers to teachers, and from parents to students. In order to decide whether or not students understand 
mathematics we should first identify how mathematical understanding occurs. The purpose of this research 
is to analyze 10th-grade students’ mathematical understanding of geometric transformations as developed 
in an environment enriched with multiple representations. Four 10th-grade students were observed during 
their lessons on translation, rotation, reflection, and dilation; semi-structured task-based interviews were 
then conducted with them after the lessons. The findings of this study reveal that although students’ levels 
of mathematical understanding developed from informal to formal, this development was not unidirectional 
and students showed a tendency to use informal understandings. Students’ primitive knowledge of geometric 
transformations was at the core of their understanding, whereas activities in the understanding levels of Image 
Making and Property Noticing directly affected the growth of their mathematical understanding. The folding 
back movements, activities in the forms of acting and expressing within the different levels of understanding, 
and multiple representations of concepts in the learning environment guided their process of mathematical 
understanding.
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The content of curriculum designs and innovations 
made in the field of mathematics education in the 
last decade have been shaped with emphasis on 
the need for students to have understanding while 
learning mathematics. For example, the recently 
updated curriculum for secondary mathematics 
in Turkey indicates that learning environments 
which “do not emphasize meaning or do not pro-
vide students with an opportunity or possibility to 
create meaning from the mathematics that is being 
learned” cannot properly meet the expectations of 
teaching (Ministry of Education [MoNE], 2013, p. 
1). Similarly, according to the National Council of 
Teachers of Mathematics ([NCTM], 2000), “stu-
dents must learn mathematics with understanding, 
actively building new knowledge from experience 
and prior knowledge,” (p. 20). How do students 
then learn mathematics with understanding? 

Hiebert and Carpenter (1992) remind us that the 
major goal of mathematics education is to ensure 
mathematical understanding in the learning envi-
ronment, and they indicate that researchers should 
focus on finding the answer to the question of how 
and in what ways students make sense of mathe-
matics. As “widespread rhetoric,” mathematical 
understanding is vital for teachers, researchers, 
and curriculum developers (Mousley, 2005, p. 553). 
When the nature of mathematical understanding 
is characterized, researchers can focus on studies 
that analyze students’ understandings in detail, 
curriculum developers can design the curriculum 
according to the growth of mathematical under-
standing, and teachers can organize their teaching 
goals based on this growth (MacCullough, 2007). 
Researchers have endeavored to identify the com-
plex nature of mathematical understanding with 
respect to the learning theories which they support 
and the interpretations they have made of the term 
understanding (Meel, 2003). An important part of 
this effort includes the work done by researchers to 
describe the development of students’ mathemat-
ical understanding via mental processes based on 
the constructivist approach.

One should consider the individual experiences, 
perceptions, and interactions students carry out in 
their environment when analyzing the process of 
mathematical understanding from the constructivist 
perspective (Pirie & Kieren, 1992). Many researchers 
have looked at learning from this perspective and pro-
vided distinct theories to characterize mathematical 
understanding (i.e., Davis, 1984; Sfard, 1991; Sierpins-
ka, 1994; Skemp, 1978). One of these theories is the 
representation theory. This theory promotes the idea 

that students understand mathematics as much as 
they can make sense of the different representations of 
mathematical concepts and build connections among 
these representations (Goldin, 2003; Hiebert & Car-
penter, 1992; Janvier, 1987). Goldin (2003) defines the 
term representation as a “configuration of signs, char-
acters, icons, or objects that can somehow stand for, 
or ‘represent’ something else” (p. 276). Students work 
with representations of mathematical objects while 
dealing with mathematics across a variety of situations 
(Duval, 2006). They can learn mathematics with un-
derstanding if they can accurately apply different rep-
resentations of a mathematical concept and construct 
the relationships between these representations (Lesh, 
Post, & Behr, 1987). Another theory that analyzes 
mathematical understanding from the constructivist 
perspective is the Pirie-Kieren theory, which was pre-
sented by Susan E. Pirie and Thomas Kieren in 1989. 
Pirie and Kieren (1994) define mathematical under-
standing as “a whole, dynamic, leveled but non-lin-
ear, transcendently recursive process” (p. 166). This 
theory emphasizes that the growth of mathematical 
understanding is not linear; by contrast, it improves 
dynamically with back and forth movements between 
mathematical ideas.

Mathematical Understanding Levels

Pirie and Kieren (1994) developed a model in order 
to represent ideas while they were building the the-
ory of the growth of mathematical understanding 
(see Figure 1).

Figure 1: The model developed by Pirie and Kieren to represent 
the dynamic feature of mathematical understanding.

There are eight nested circles, which model the 
eight levels that can be encountered during the 
growth of mathematical understanding. The cir-
cles denote that each progressive level includes 
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the previous levels of understanding, and mathe-
matical understanding develops through back and 
forth movements within these circles. Although the 
model does not have a linear base, the regions be-
tween the circles are called levels because it has a 
certain hierarchy (Pirie & Kieren, 1994). The circles 
in the model show the levels of Primitive Knowing, 
Image Making, Image Having, Property Noticing, 
Formalising, Observing, Structuring, and Inventis-
ing from inner to outermost.

Primitive Knowing is knowledge about a topic to be 
explored, particularly a concept, that a student is as-
sumed to be constructed previously (Pirie & Kieren, 
1994). The circle that represents the second level is 
Image Making, an important and active process for the 
growth of understanding (Borgen, 2006). Students try 
to create an image of the concept by using their prim-
itive knowledge during mental or physical activities at 
this level (Thom & Pirie, 2006). In the third circle of 
the Pirie-Kieren model, the level symbolizing Image 
Having, students have an image about the concept by 
means of the activities performed in the previous level. 
Independent of these activities, they “‘know’ some piece 
of mathematics” in regard to the concept (Thom & Pi-
rie, 2006, p. 190). The next level is Property Noticing, 
where students question and use the different images 
they have developed. They examine the similarities and 
differences of their images and relate them to each other 
using particular mathematical statements (Thom & Pi-
rie, 2006). At the level of Formalising, students generate 
a general statement about the concept by using these 
particular statements (Pirie & Kieren, 1994). They can 
construct the mathematical definition of the concept 
or develop formulas and algorithms about the topic 
(Borgen, 2006). As the sixth level of the Pirie-Kieren 
model, Observing is the level at which students observe 
the meaning they have formalized and organize their 
observations. They “reflect on and coordinate such 
formal activity and express such coordinations as the-
orems” at this level (Pirie & Kieren, 1994, p. 171). At the 
level of Structuring, students can capture a pattern by 
creating a synthesis of the observations they have made 
(Borgen, 2006). They can logically explain their formal 
observations, prove theorem-like expressions, and ver-
ify ideas that they had developed in the previous level 
(Thom & Pirie, 2006). The outermost level of the model 
is Inventising, where students look at their previously 
developed understanding, as Kieren (1992) says, in a 
“completely new way” and ask questions that lead them 
to invent totally new concepts (as cited in Borgen, 2006, 
p. 34). The four inner levels are described as the infor-
mal levels whereas the four outer levels are described as 
the formal levels of mathematical understanding (Pirie 
& Kieren, 1994).

The Characteristics of the Pirie-Kieren Theory

The Pirie-Kieren theory, in addition to the levels of 
understanding, indicates some important features 
called folding back, “don’t need” boundaries, the 
complementary aspects of acting and expressing, 
and interventions. In the following section these 
features will be explained respectively.

Folding Back: Pirie and Kieren (1991) state that 
mathematical understanding proceeds with the 
help of folding back movements between levels 
where they define these movements as: 

A person functioning at an outer level of under-
standing when challenged may invoke or fold back 
to inner, perhaps more specific local or intuitive un-
derstandings. This returned to inner level activity is 
not the same as the original activity at that level. It is 
now stimulated and guided by outer level knowing. 
The metaphor of folding back is intended to carry 
with it notions of superimposing ones current un-
derstanding on an earlier understanding, and the 
idea that understanding is somehow ‘thicker’ when 
inner levels are revisited (p. 172).

In other words, students fold back to the inner 
levels to broaden their existing insufficient under-
standing and reorganize previously constructed 
knowledge to develop new and appropriate images 
about the topic (Pirie, Martin, & Kieren, 1996).

“Don’t Need” Boundaries: Some of the boundar-
ies between the levels in the Pirie-Kieren model are 
shown with thicker lines (see Figure 1). These lines in-
dicate an increasing abstract understanding (Borgen, 
2006) and separate the model into four parts. A “don’t 
need” boundary means that students no longer need 
the specific actions that have been carried out in the 
levels inside the boundary, and they can work with a 
more general and abstract level of understanding out-
side the boundary (Pirie & Kieren, 1994).

Complementary Aspects of Acting and Express-
ing: Pirie and Kieren (1994) classify activities ex-
perienced at the levels between Primitive Knowing 
and Inventising as acting and expressing. Acting is 
a mental or physical activity that “encompasses all 
previous understanding, providing continuity with 
inner levels,” and expressing is “generally a verbal 
statement that gives distinct substance to that par-
ticular level,” (p. 175).

Interventions: As a characteristic, interventions are 
“either internal or external” stimulating actions that 
lead students to review their present understanding 
(Borgen, 2006, p. 42). Pirie and Kieren (1994) cate-
gorize interventions as (a) provocative interventions 
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that proceed the understanding to an outer level, (b) 
invocative interventions that cause folding back to an 
inner level, and (c) validating interventions that sup-
port and confirm the present level of work.

Researchers continue to use the Pirie-Kieren the-
ory, which explains the complex and dynamic na-
ture of the process of mathematical understanding 
with the levels of understanding and its features 
explained above. Martin (2008) noticed that the 
theory is still growing dynamically as it is used in 
different research areas such as teacher education, 
the growth of students’ or pre-service teachers’ un-
derstanding of mathematical concepts, the growth 
of students’ mathematical understanding in com-
puter-supported learning environments, the effect 
of student or teacher behaviors on mathematical 
understanding, and collective learning environ-
ments. Aside from these research areas, the theory 
has been elaborated on by Martin (1999), focus-
ing on the feature of folding back, and by Towers 
(1998), focusing on the feature of teacher interven-
tions in the learning environment. 

Because the growth of mathematical understand-
ing is a process rather than an acquired knowledge 
according to Pirie-Kieren theory, it is a purpo-
sive model to be used to describe the process of 
students’ mathematical understanding and map 
their understanding as they engage different levels 
(Borgen, 2006; Martin, 2008; Warner, 2008). An 
analysis of research that has used this model (i.e., 
Martin, 2008; Nillas, 2010; Warner, 2008) suggests 
that research should continue to investigate the 
mathematical understanding of students using all 
components of the model. MacCullough (2007) 
also indicated that there is a need to conduct in-
vestigations that articulate the process of students’ 
mathematical understanding of a concept rather 
than perform research that focuses on how stu-
dents understand a concept, what they do not un-
derstand about a concept, or how they may develop 
a concept. To provide learning environments with 
understanding in schools it is important to charac-
terize students’ mathematical understanding after 
lessons in which they were exposed to multiple rep-
resentations of mathematical concepts. In order to 
achieve this, researchers should obviously interact 
with students for a long period of time to examine 
their mathematical understanding in-depth. There-
fore, in this research, four months was spent with 
four 10th-grade students in order to analyze their 
mathematical understanding of geometric trans-
formations (henceforth described as just “transfor-
mations”) in detail.

National curricula and standards (MoNE, 2013; 
NCTM, 2000), as well as quite a few researchers 
(i.e., Edwards, 2003; Flanagan, 2001; Hollebrands, 
2003; Jung, 2002; Yanik, 2006), support the idea 
that transformations is a conceptual field that 
should be taught at schools in all grades. According 
to the National Council of Teachers of Mathematics 
([NCTM], 2000), high school students “should un-
derstand and represent translations, reflections, ro-
tations, and dilations of objects in the plane by using 
sketches, coordinates, vectors, function notation, 
and matrices” and they “should use various repre-
sentations to help understand the effects of simple 
transformations and their compositions” (p. 397). 
Transformations offer students opportunities to 
work with important mathematical concepts such 
as functions and symmetry, to associate mathemat-
ics with other disciplines, and to reason by using 
different representations of mathematical concepts 
(Flanagan, 2001; Hollebrands, 2003). However, it 
is not easy for students to understand this import-
ant topic (Edwards, 2003; Flanagan, 2001; Holl-
ebrands, 2003; Jung, 2002; Soon, 1989; Sünker & 
Zembat, 2012; Yanik, 2006, 2011; Yanik & Flores, 
2009; Yavuzsoy-Köse, 2012). Research shows that 
students from all grades, even pre-service teachers, 
have difficulty dealing with transformations. Al-
though a transformation on the plane is defined as a 
one-to-one correspondence from the plane onto it-
self (Dodge, 2012), students and pre-service teach-
ers understand transformations as single motions 
on the plane (Edwards, 2003; Hollebrands, 2003; 
Yanik, 2006). The main difficulties students face in 
working with transformations are a) understanding 
the plane as the domain and range of transforma-
tions, b) confusing the parameters and the variables 
of transformations with each other, c) their infor-
mal experiences gained from using transformations 
in daily life, and d) an insufficient understanding 
of the fundamental mathematical concepts that 
have to be to be developed before transformations 
(Edwards, 2003; Hollebrands, 2003; Jung, 2002; 
Yanik, 2011). Because transformational geometry 
constitutes an important part of secondary mathe-
matics curricula, more research is needed to artic-
ulate student understanding about transformations 
(Flanagan, 2001; Hollebrands, 2003; Soon, 1989). 
The purpose of this study is to analyze 10th-grade 
students’ mathematical understandings of trans-
lations, rotations, reflections, and dilations which 
had been developed in a learning environment, en-
riched with multiple representations.
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Methods

This study is based on the first author’s (“the research-
er” henceforward) doctoral dissertation, which was 
designed as a qualitative case study (Gulkilik, 2013). 

The Research Context and Participants

The study was conducted in a high school located in 
one of the central districts of the capital city in Turkey. 
First, a six-week pilot study was carried out in three 
different 10th-grade classrooms of the school. The 
same mathematics teacher introduced several physical 
manipulatives regarding triangles and guided students 
in real world activities in each of these three classes. In 
the meantime, the researcher joined the classes during 
these six weeks and performed semi-structured par-
ticipant observations of the context and students.

After six weeks, the research class was selected ac-
cording to the students’ reactions to the activities in 
the pilot study, their lesson attendance, and their mo-
tivation. The reason for not selecting one of the two 
classes was because students were usually passive 
during lessons. Also, many students from the other 
class which was not chosen were affiliated with social 
clubs who organized different activities during out-
of-school-time. It was thought that these two condi-
tions might negatively affect the study. The pilot study 
continued for four weeks in the research class. During 
this period, virtual manipulatives were introduced to 
the students and one hour of the two-hour geometry 
lessons was carried out by the teacher in the computer 
lab every week. By this means, it was aimed to help 
the teacher and students gain experience in the lessons 
performed with the support of manipulatives. 

There were 32 students in the research class, 17 fe-
males and 15 males. Four students, two females and 
two males, were chosen as participants according to 
the maximum variation sampling (Patton, 2002). The 
researcher’s classroom observations during the pilot 
study, teacher’s opinions, the pretest administered to 
identify the pre-instructional knowledge about trans-
formations, and spatial-ability test scores were taken 
into account during the selection of participants (see 
Table 1). The pretest consisted of open-ended ques-
tions prepared to determine students’ abilities in us-
ing distinct representations of transformations and 
translating among these representations. The spatial 
ability test, implemented after the pretest, had two 
sub-dimensions, spatial orientation and spatial rea-
soning. Spatial ability was considered to be a criterion 
for selecting participants because it is an important 
component that affects the conceptual understanding 
of geometric concepts and problem-solving activities 

(Battista, 1990; Fennema & Tartre, 1985). Detailed in-
formation about these tools will be presented under 
the topic of data collection.

Table 1
Characteristics of Participants

Name Age Spatial Ability 
Test Score

Pretest 
Score

Geometry 
Achievement 

Score in Previous 
Semester

Defne 17 67.5 28 71.75
Elif 16 150.25 55 78.50 
Metin 17 161.50 40 55
Selim 16 48 32 87
Note. Highest possible scores were 282 for Spatial Ability, 100 
for the pretest, and 100 for geometry achievement.

The content of lessons for translation, rotation, re-
flection, and dilation were prepared during the pi-
lot study. The lessons were designed with the help of 
two mathematics education professors and six pre-
service secondary mathematics education teachers 
who were enrolled at a government university. The 
pre-service teachers applied the content design of 
each lesson onto their classmates in the Methods 
in Mathematics Education II course. The research-
er and two mathematics education professors ob-
served these applications. The researcher revised 
the lesson contents with the teacher of the research 
class after considering feedback from the two math-
ematics education professors. The teacher with 
fourteen years of experience was selected because 
she had positive attitudes regarding manipulatives 
and had used dynamic geometry software such as 
Geogebra and The Geometer’s Sketchpad regularly 
during her geometry lessons. 

The learning outcomes of secondary mathemat-
ics curriculum in Turkey propound that students 
should construct a formal understanding and make 
formal observations about transformations in 10th-
grade. Therefore, lessons were prepared in a man-
ner that students would be able to progress their 
understanding to the level of Observing. Physical 
and virtual manipulatives were used in addition to 
the verbal, graphical, and algebraic representations 
of transformations to enrich the lessons. Quite a 
few researchers highlighted the importance of us-
ing multiple representations in learning environ-
ments in order to strengthen the mathematical un-
derstanding of students (i.e. Goldin, 2003; Lesh et 
al., 1987; Ozgun-Koca, 1998). The physical manip-
ulatives used during the instruction were designed 
with the pre-service teachers and revised by the 
authors according to feedback from two mathemat-
ics education professors (see Figure 2). Some basic 
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criteria was considered during the design process 
such as (a) being based on the learning outcomes 
about transformations, (b) being dynamic, (c) being 
observed clearly in terms of its relation with other 
representations of the concept, and (d) being devel-
oped with easily accessible materials. After a broad 
search, http://www.mathsisfun.com, http://www.
shodor.org, http://www.interaktifmatematik.com 
and http://nlvm.usu.edu were chosen as virtual ma-
nipulative websites, and two mathematics educa-
tion professors were asked for their opinions about 
the convenience of manipulatives in these websites. 
The website for the National Library of Virtual 
Manipulatives (http://nlvm.usu.edu), designed by 
Utah State University, was selected for the study be-
cause the manipulatives on the website included all 
of the learning outcomes for translation, rotation, 
reflection, and dilation, and they were explicitly 
easy for students to use (see Figure 2). 

After finishing the pilot study and all the prepa-
rations for the main study, lessons on translation, 
rotation, reflection, and dilation were performed by 
the teacher in the computer lab. Two lesson hours 
(2x50 minutes=100 minutes) per week were devot-
ed for each of the transformations, therefore taking 
four weeks to complete all transformation lessons. 
All lessons were recorded with a video camera. 

The learning outcomes for the transformations on 
which the lessons were based indicated that students 
should apply translation, rotation, reflection, and di-
lation, and they should identify and verify congruent 
and similar figures on plane. For this, the students 
used multiple representations of the transformations, 
sometimes during the teacher-guided activities and 
sometimes during the individual applications, to 
make sense of the related concepts. The teacher be-
gan the lessons by introducing manipulatives, visual 
and verbal representations, and then she presented 
the algebraic representations of the current trans-
formation. She completed each lesson with partic-
ular problems in which distinct representations of 
the mathematical concepts were used. Hence, the 
students were expected to construct images for the 
transformations by using their previous knowledge, 
to examine the properties of transformations by us-
ing these images, to develop the formal meaning of 

the transformations by connecting these properties, 
and to make formal observations about the concepts 
with the help of multiple representations. 

For example, the translation lesson began with a 
web-based video to draw the students’ attention. 
Then the teacher wanted students to talk about the 
content of the video in order to learn students’ im-
ages about the transformation. After sharing some 
examples of translations from daily life, students 
used virtual manipulatives to observe how the co-
ordinates of a figure changed under a translation. 
The teacher introduced a physical manipulative 
of translation and discussed with the students the 
relationships between the original points and the 
image points of several geometric figures. She re-
minded students about the figures they had moved 
x-units to the right and left, and y-units up and 
down in middle-school transformation lessons and 
asked them whether or not they could determine 
these movements using vectors. After the teacher 
inserted the concept of vector into the lessons, the 
students continued using the physical manipulative 
to translate different geometric figures by different 
vectors. The teacher wanted them to use virtual 
manipulatives again to explore which properties 
remained invariant under a translation. For this 
purpose, she guided students in applications where 
students observed the differences between the orig-
inal and image figures in terms of distance, angle 
measures, parallelism, and orientation; they then 
discussed their observations together. 

After these applications, the mathematical definition 
of a transformation is introduced as a one-to-one 
correspondence that maps the points of plane onto 
plane, and the algebraic representation of translation 
was presented to share a common language with 
students. The teacher began to introduce algebraic 
representation with T : R2 " R2, where  is a vec-
tor on the plane. She denoted the image of the point 
P by P ʹ where  P ʹ = T (P) = P +  and clarified the 
related mathematical notations. She continued the 
lesson with applications where she expected students 
to realize differences when the translation vector was 
changed. She wanted students to use virtual manip-
ulatives again to draw different figures on the plane, 
denoted as a rectangle on the screen, and translate one 

Figure 2: Samples from the physical and virtual manipulatives used during instruction.
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of them by a vector. When students translated one of 
the figures, all of the other figures were also translat-
ed by the same vector; as a result, the teacher could 
emphasize that a translation transformed all points on 
the plane, not just the points of the present figure. She 
completed the lesson with exercises on GeoGebra and 
endeavored to link verbal, graphical, and algebraic 
representations to each other to strengthen students’ 
understandings. The researcher joined in the lessons 
to perform semi-structured observations, focusing 
on the participants and taking field notes about their 
growth of mathematical understanding.

Data Collection Process 

Before the transformation lessons a pretest was 
administered to all students in the research class 
to determine their pre-knowledge on translation, 
rotation, reflection, and dilation. The questions 
were prepared to examine students’ previous un-
derstandings in terms of their ability to apply 
verbal, graphical, and algebraic representations of 
mathematical concepts in transformational geom-
etry unit. The test was designed with the help of a 
mathematics education professor and included 26 
open-ended questions about these four transforma-
tions. After the pretest, the spatial ability test, which 
was adopted from the tasks in the Kit of Factor-Ref-
erenced Cognitive Tests (Ekstrom, French, Har-
man, & Dermen, 1976) and translated into Turkish 
by Delialioğlu (1996), was given to the students to 
identify their spatial reasoning. 

The first semi-structured interviews with the partici-
pants were conducted according to their responses to 
the pretest questions after the implementation of these 
two tools. The lessons began the following week with 
translation, and continued over the next three weeks 
with rotation, reflection, and dilation, respectively. 
Task-based semi-structured weekly interviews were 
carried out with participants after each transforma-
tion lesson to analyze the mathematical understand-
ing they had developed during the introduction. 

Task-based interviews were constructed to identify 
participants’ mathematical application in one or more 
tasks (a question, problem, or any activity) in specific 
conditions that were predetermined by the researcher 
(Goldin, 2000). The semi-structured interview forms 
were prepared with the help of previous research stud-
ies on transformations (i.e., Jung, 2002; Soon, 1989; 
Yanik, 2006). The forms include open-ended ques-
tions that asked students to apply verbal, graphical, 
and algebraic representations of the current transfor-
mation and translate among these representations (see 

Appendix). The forms were finalized after considering 
the feedback of a mathematics education professor. 
Each of the weekly transformation interviews lasted 
an average of 50 minutes. The physical and virtual 
manipulatives used during instruction were made 
ready during the interviews. All of the interviews were 
video recorded and data was transcribed line-by-line 
to begin data analysis.

Data Analysis

Constant comparative method (Glaser & Strauss, 
1967) was used to analyze the transcripts of the 
task-based semi-structured interviews. First, they 
were separated into parts and open-coded sentence 
by sentence. The codes were then evaluated care-
fully and relationships were constructed between 
the codes through axial coding. After making con-
nections, the codes were put together under their 
related categories and themes were generated using 
category evaluation. The field notes taken during 
the participant observations were used to validate 
and support the interview data. 

The gathered data was analyzed according to the Pi-
rie-Kieren model, which provided the opportunity 
to observe the growth of mathematical understand-
ings of students. A coding protocol was generated 
based on the components of the theory and the 
mathematical framework of the transformations. 
Protocol began with the codes and explanations for 
the theory’s levels of mathematical understanding. 
Statements were provided to exemplify the possible 
activities of acting and expressing for each of the 
transformations that a student would perform in 
any level. The protocol continued with the codes 
and explanations about the two features of the the-
ory: folding back and interventions. Features were 
clarified through sample statements of the transfor-
mations, thus determining the possible activities 
under each feature. Protocol was put into its final 
form by taking into account the feedback from 
two mathematics education professors. After com-
pleting the preparations, students’ mathematical 
understandings of translation, rotation, reflection, 
and dilation were analyzed according to the proto-
col. Analysis was separately performed according 
to the levels of mathematical understanding and 
their features, and codes were then associated. For 
example, when a student was operating in the level 
of Formalising and needed to work on transforma-
tion properties using a manipulative, the statement 
was coded as using manipulatives to fold back from 
Formalising to Property Noticing. The Pirie-Kieren 
model with eight circles was used to explicitly pres-
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ent the growth of students’ mathematical under-
standing to the reader. Serrated lines were used just 
as Pirie and Kieren (1994) did to show the extended 
work at a particular level. 

In addition to triangulating the interviews with ob-
servations, prolonged engagement and persistent 
observations were used for ensuring the trustwor-
thiness of the study. Thick description of the study 
and purposeful sampling were used for transfer-
ability, and member check through the application 
of Miles and Huberman’s formula (1994) (agree-
ments/[agreements + disagreements]) was used 
to verify credibility. An experienced mathematics 
education researcher with knowledge of the Pi-
rie-Kieren theory but unaware of the context of the 
research analyzed 10% of the entire data. The re-
searcher gave this mathematics education research-
er the transformation data sets of two different par-
ticipants and asked him to code the data according 
to the components of the Pirie-Kieren theory. The 
codes were compared and agreement was provided 
for 92% of the data. The remainder was discussed 
with him by making comparisons, and consensus 
was reached on the codes by the end of the dis-
cussion. Additionally, the findings were presented 
using direct quotes from the study, and documents 
related to the data were preserved. 

Findings and Discussion

The findings of the study were formed around the 
traces students left at different levels of mathemat-
ical understanding while they were dealing with 
transformations. These traces were tracked by con-
sidering the folding back movements performed 
within the levels, the complementary activities in 
the form of acting and expressing from the levels 
of Image Making through Observing, and the in-
terventions in the learning environment which af-
fected the growth of mathematical understanding. 

The Traces Left in Formal and Informal Under-
standing Levels

The lessons conducted throughout the study were 
designed based on the learning outcomes regard-
ing transformations in the secondary school math-
ematics curriculum. According to these learning 
outcomes, students should be able to define transla-
tions, rotations, reflections, and dilations, as well as 
express formal observations including the specific 
properties that remain invariant under these trans-
formations. However, the findings showed that 

even as students developed formal understandings 
during the lessons, they could not use these under-
standings while working on mathematical tasks 
during the interviews. In other words, although 
students had progressed their mathematical under-
standing to the level of Formalising or Observing, 
they were not able to use these levels of understand-
ing independent of their inner levels of understand-
ing. This situation reveals that the second “don’t 
need” boundary was not an easy threshold to cross 
for students. Figure 3, which was used to model 
(a) Defne’s understanding of translation, (b) Elif ’s 
understanding of rotation, (c) Selim’s understand-
ing of reflection, and (d) Metin’s understanding of 
dilation, visually outlines this interpretation. The 
numbers on the figures are used to show the pro-
gression of students’ understanding as they work on 
the tasks given during the interviews. 

As seen in Figure 3, when Defne encountered trans-
lation tasks, she began to study using her previously 
constructed images. She then needed to construct new 
images and worked within the level of Image Making 
using her primitive knowledge. She folded back again 
to Primitive Knowing while working in the Formalis-
ing level. Although Elif preferred to use images to ex-
press her mathematical understanding about rotation, 
she worked within a formal level of understanding 
most of the time during the interview and folded back 
to Property Noticing because of her individual needs. 
Similarly, Selim described his images about the con-
cept at the beginning of the reflection interview. Even 
though he was able to use his formal observation, he 
frequently folded back to Image Making to reorganize 
his images. When Metin met with the first task about 
dilation, he used his images and mostly worked within 
Formalising and Observing except for folding back to 
Primitive Knowing because of the algebraic represen-
tation of the transformation. 

Table 2 presents an example showing how stu-
dents’ mathematical understanding was mapped 
according to their acting and expressing activities 
within levels. These mappings support the idea that 
students construct formal understandings from 
their informal understandings. These two under-
standings develop in a complementary manner and 
mathematical understanding grows as an integrat-
ed process (Pirie & Kieren, 1994). 

Primitive Knowledge as the Core of Mathemati-
cal Understanding

Students’ primitive knowledge of transformations 
as identified by the pretest before the lessons played 
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a key role in their growth of mathematical under-
standing. Primitive knowledge of transformations 
was found to be developed around the internal rep-
resentations that students had constructed about 
basic geometric concepts such as vector, line, func-
tion, and plane that needed to be understood be-

fore transformations. By internal representation, we 
mean the verbal, imagistic, and formal-notational 
mental structures of a concept that a student cre-
ates by considering the mathematical or non-math-
ematical experiences in the learning environment 
(Goldin, 2003). Findings under this topic include 

(a) Defne’s mathematical understanding of translation                           (b) Elif ’s mathematical understanding of rotation

(c) Selim’s mathematical understanding of reflection                           (d) Metin’s mathematical understanding of dilation 

Figure 3: Mappings of participants’ mathematical understanding for different transformations.

Table 2
Activities Elif Used While Dealing With Tasks During The Rotation Interview

Image Having Property Noticing Formalising Observing
(1) “An example 
for rotation… Let 
me show here [us-
ing virtual manip-
ulative], an object 
like that [drawing 
a triangle]. If we 
rotate this figure 
by 90º, it will be 
like that, by 180º 
it’s like that, and 
by 270º like that. It 
will come to same 
place at by 360º 
[rotating the tri-
angle by 90°, 180°, 
270°, and 360° 
correctly in virtual 
manipulative]”

(2) “In rotation, the direction of 
the figure changes. In translation, it 
moves in the direction of the vec-
tor. I mean, because rotation is cir-
cular the figure moves in a circle.”
(3) “Rotating an object on the plane 
means rotating the object around a 
point that is not on the figure with-
out changing the distance.”
(5) “First, I determine the distance 
between a point on the original figure 
[showing a triangle on virtual ma-
nipulative] and the rotational center. 
Then I mark the rotation angle and 
rotate the figure by this angle.”
(11) Elif determined the rotation 
angle as 270º clockwise and used 
the algebraic representations of 
the transformation to examine the 
properties of rotation.

(4) “This sentence, ‘rotating a figure around a point by a 
specific angle on the plane’ explains the rotation exactly.”
(6) Elif drew a rectangle in virtual manipulative, one 
corner of it was on the original point to be rotated, and 
the opposite point was on the rotation center. Then she 
found the image point by using this rectangle. 
(7) When Elif heard the term positive direction, she 
said that it meant “rotating the triangle in a count-
er-clockwise direction” and she wrote the mathe-
matical formula of rotation while she indicated that 
she would “use the formula to find the image of a 
point under rotation if the rotation angle was other 
than 90º, 180º, 270º, or 360º”.
(10) Elif successfully found the rotation angle of a 
task in which the original figure and its’ image after 
a rotation by 90º were given.
(12,13) Elif was able to find the image of a triangle 
that was rotated by 60º around the origin. She could 
correctly apply the mathematical formula of the 
transformation and use both virtual and physical 
manipulatives effectively in this process. 

(8) She stated “the 
original triangle 
and its’ image 
were congruent 
after a rotation, 
only their location 
was different.”
(9) She stated that 
if the rotation an-
gle was changed 
in a rotation, “the 
image of the figure 
would not change; 
only its location 
would change”.



E d u c a t i o n a l  S c i e n c e s :  T h e o r y  &  P r a c t i c e

1540

the implications of vector, ordered pair, line, func-
tion, image, one-to-one correspondence, and plane 
concepts which constitute a base for understanding 
transformations. As the students’ understanding 
of these concepts was insufficient, they had some 
difficulties in developing a proper mathematical 
understanding about transformations. For exam-
ple, it was found that students understood the term 
display from the term image when answering ques-
tions in which the properties of an image of a figure 
under a transformation were asked. The following 
sentences that Defne used when asked whether or 
not there would be any change with the image of an 
ABC triangle under a translation if the translation 
vector was changed exemplify this situation:

Here, only the dimension changes. This distance 
(referring to the distance between the ABC tri-
angle and its image). The image? Here, it does 
not change because they are similar. I mean, the 
ratios are the same; they are congruent. 

Another incidence encountered during the following 
phase of the same interview indicates the role of basic 
concepts that students should previously have had an 
understanding of for appropriate mathematical un-
derstanding of transformations. Because Defne had 
not developed a proper understanding of the concept 
of vector, she had difficulties in understanding trans-
lations. When she was expected to draw the vector  
(1, 4) on the second quadrant, she stated that the com-
ponents of the vector would change to (-1, 4) and it 
took a long time for her to overcome this problem.

Similarly, students’ difficulties in understanding 
mathematical notations for the concept of plane and 
function as well as the parameters of transformations 
such as R2 " R2, T (x, y), Ra(x,y) directly affected the 
growth of their mathematical understanding. The fol-
lowing sentences from Elif, who had developed a su-
perior understanding among the participants, provide 
a good example of this finding. She explained what 
she understood from the expression R2 " R2 in the 
following sentences: 

It is going from r square to r square... Like (2, 4). 
I mean, the first one, the x component, will be r 
squared, and the y component will be the square 
of x. Actually, I... This expression, from r square 
to r square is complicated ... It may also be (4, 16), 
similarly.

When one remembers that there may be many fac-
tors that influence students’ primitive knowledge 
(Pirie & Kieren, 1994), the basic concepts that are 
required to understand transformations can be said 
to come before other factors. Students can develop a 

formal level of understanding to the extent that they 
have a proper and strong understanding of these 
primitive concepts. These findings are supported by 
other researchers who have examined the growth 
of mathematical understanding of different mathe-
matical concepts (Grinevitch, 2004; Pirie & Kieren, 
1994) and researchers who have studied students’ 
understandings of transformations (Flanagan, 2001; 
Hollebrands, 2003; Soon, 1989; Yanik, 2011, 2013).

On the other hand, students’ primitive knowledge 
about dilation was limited to stretching and shrink-
ing activities on the plane because the dilation lesson 
in the study was the first time they had met with this 
transformation. Students’ primitive knowledge was 
observed to also be a point of support for growth of 
mathematical understanding of transformations. Even 
as they began their explanations with a formal un-
derstanding, they used their previously constructed 
knowledge when needed. For example, Elif and Metin, 
who mostly worked within formal levels during their 
interviews, frequently needed to fold back to Primitive 
Knowing in order to study algebraic representations of 
translation and reflection. These findings are import-
ant for revealing the role of students’ previously con-
structed knowledge regarding the current concept.

Images Determine the Path of Growth

Findings related to the growth of mathematical 
understanding during this process show the im-
portance of the images that students constructed 
for transformations in addition to the core role of 
primitive knowledge. Participants had had experi-
ence with isometric transformations (translations, 
rotations, and reflections) up until they were in 
10th-grade, and had developed images based on 
the distinct external representations of these trans-
formations, such as written expressions, graphics, 
pictures, diagrams, equations, and formulas. From 
this, the factors influencing students’ images were 
determined during the pretest interview as (a) 
spoken language related to transformations in dai-
ly life, (b) mathematical and non-mathematical 
real-world experiences, and (c) the learning out-
comes of transformations students having learned 
from middle school up to 9th grade. 

Students’ images about isometric transformations 
were discovered to be influenced by terms used for 
daily-life actions such as replacing, moving, sliding, 
turning around, and superimposing. For example, 
Defne explained translation as “moving a figure 
to the right or left, and/or up or down” while Elif 
explained it as “replacing a figure.” The following 
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dialogue which occurred between Elif and the re-
searcher supports this finding: 

Elif:  Translation is changing the location of 
a figure without changing its direction, 
shape, area or size.

Researcher: How can I change its location?

Elif:   Well, we cannot change its direction or 
area. We will only change its position.

Researcher: How can I change its position?

Elif: By sliding. 

In addition to spoken language, real-world expe-
riences were another factor that affected students’ 
image development with isometric transforma-
tions. The following explanations that Metin made 
about these transformations, including also the 
above-mentioned daily-life actions, can be given as 
an example of this situation:

Changing the position of a table is a translation. 
Turning a pencil around by fixing one of its points 
is a rotation. The fixed point is the origin; I mean 
the point (0, 0). Reflection... It is like seeing the be-
low part of a folded, blank paper as the reflection 
of the above part of the same paper. The line in the 
middle of the paper is the axis of symmetry. 

Students in the research class had previously been 
introduced to the three isometric transformations 
in middle school and to planar tessellations in the 
9th grade. In the learning outcomes of those grades 
transformations were referred to as motions, and 
the students were required to explain and perform 
these motions (see MoNE, 2009, 2010). Partic-
ipants’ responses to the pretest interview ques-
tions showed that they had images related to these 
learning outcomes. The pretest-interview dialogue 
between Defne and the researcher can be used as 
evidence to support this finding.

Defne:  For example, with translations from the 
x- or y-axis, we have the unit method, so 
many units right or so many units left. 

For example if we say right we make the 
translation on the positive x-axis, if we 
say left we make the translation on the 
negative x-axis. If it says up we make it 
on the positive y-axis and if it says down 
we make it on the negative y-axis. As an 
example, if it says translate the point  
A(x, y) 3 units right and 2 units down, it 
is (x +3, y−2). 3 units right on the x-axis 
and 2 units down on the y-axis.

Researcher:  I got it. Is it like you drew here (see Fig-
ure 4)?

Defne: Yes, exactly.

Researcher: Ok. What can you say about rotation?

Defne:  On the coordinate plane for example... 
We can turn a figure around by 90º, 
180º or 270º in the first quadrant. After 
360º it returns to its original position, 
becoming the same figure of course. It’s 
like that.

Researcher:  Did you think separately while you 
were drawing them?

Defne:  Yes. For example, let’s take this (shows 
the heart icon in the first quadrant). 
This is 90º (shows the heart icon in the 
fourth quadrant), this is 180º (shows 
the heart icon in the third quadrant) 
and this is 270º (shows the heart icon 
in the second quadrant).

Researcher:  I see. Can you show in which direction 
you are turning it? 

Defne:  Yes, this direction (shows the clock-
wise direction).

Researcher: Ok. What can you say about reflection?

Defne:  The axis of symmetry... Well, reflection 
means opposite. I mean in the mirror.

Students’ images before the lessons could be said to be 
the starting point of growth in mathematical under-
standing. Students were observed to prefer beginning 

Figure 4: The drawings Defne made about translation, rotation, and reflection.
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their explanations with these images during the weekly 
interviews for each isometric transformation. For ex-
ample, Selim gave “ferris wheel,” “a car wheel performs 
both translation and rotation,” and “his image in the 
mirror,” when asked to give examples of these trans-
formations during the interviews conducted after the 
lessons. Similar findings were observed by Jung (2002), 
Flanagan (2001), and Yanik (2011), while studying 
transformations with students of different ages. 

On the other hand, developing new proper images 
based on primitive knowledge was observed to have 
a big influence on the growth of mathematical under-
standing of transformations. At that point, mathemat-
ically inappropriate images were identified to cause 
trouble for students at further levels and took much 
time and effort to correct them. For example, Selim 
and Metin had difficulties with mathematical tasks 
because of the images that they had developed about 
algebraic notations for translation. They could not cor-
rect these images for a long time even while working 
on different examples of transformations. Both partici-
pants understood that the notation T (3, 4), where  = 
(1, -4), represents “the point (3, 4) as the image of a par-
ticular point translated by vector u”. Selim’s explanation 
of the notation precisely shows the images he had con-
structed while using physical manipulatives as follows:

Our vector u is (1, -4), let me first draw it. (1, -4) is 
like that (draws the vector). It gave me its translated 
image, T (3, 4). Where is the point T (3, 4)? Here 
(marks the point (3,4)). Well, if I choose any point 
as P(x, y), I add the point P(x, y) to the point (1, -4) 
and get the point (3,4). Then I think about it; what 
do I add to 1 to get 3? The x component is 2; what 
do I add to -4 to get 4? The y component is 8. Then I 
say that point P is the point (2, 8).

Although the teacher properly used this mathemat-
ical notation that included the images of different 
mathematical concepts such as function, domain, 
range, vector, and image, Selim and Metin had devel-
oped different images independent of the teacher’s 
use of notations, and they preferred to use their own 
images in the learning environment. These findings 
effecting the growth of mathematical understanding 
revealed that knowledge is not something that can 
be easily transferred to students; on the contrary, it 
is something that students construct by themselves.

Image Making and Property Noticing according 
to Primitive Knowledge and Spatial Ability

Because students could not always use formal un-
derstanding, they worked mostly within the levels 
of Image Making and Property Noticing during the 

interviews conducted after their lessons (see Figure 
3). Although the lessons were carried out to ensure 
that students could perform formal observations, 
students preferred to focus on the activities within 
these two levels. This observation suggests that stu-
dents were continuing to develop the formalization 
process of mathematical understanding.

Students’ primitive knowledge and spatial abili-
ty were the two main factors that determined the 
performance of students within Image Making and 
Property Noticing. As an example of the role of 
primitive knowledge, Metin had some difficulties 
with rotation while working on trigonometric func-
tions during the interview; he needed to reorganize 
his images regarding algebraic representations of 
rotation at Image Making level. On the other hand, 
he did not encounter any problems regarding his 
primitive knowledge while working on reflection 
at a point; he preferred to apply some specific ex-
amples of reflection to observe properties of this 
transformation. The following sentences which 
come from his Image Making activities when asked 
to find the image of a triangle after a 90º rotation 
support this finding: 

Well, what was that? (writes xcosα - ysinα, xcosα 
+ ysinα). I use that formula. The point (-2, 1), 
-2cos90 - 1sin90, this will give the first compo-
nent. Let me put a comma (continues to write 
the previous formula). -2cos90 - 1sin90, -2cos90 
+ 1sin90. What were these? cos90, sin90? Let me 
draw a triangle (draws a right triangle and tries to 
calculate the value of  cos90 and sin90). Adjacent 
edge divided by the hypotenuse, what was that...

The second factor affecting students’ performance 
in these active levels can be said to be their spatial 
abilities. Elif and Metin, who were at an advantage 
in terms of spatial ability, mostly worked on activ-
ities using different properties of transformations. 
Defne and Selim, who were at a disadvantage in 
terms of spatial ability, usually worked on Image 
Making activities (see Table 1 and Figure 3). The 
researcher’s observations of the participants during 
instruction verified this finding. Elif and Metin 
were faster at completing Image Making activities 
for transformations by using different representa-
tions, but Defne and Selim took more time and ef-
fort to apply these representations and develop im-
ages during the lessons. Primitive knowledge and 
spatial ability, two important factors, reveal that 
students should work within these two informal 
and active levels while trying to develop a strong 
mathematical understanding of transformations. 
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Folding Back Movements for Strengthening 
Mathematical Understanding 

Students folded back to inner levels when they needed 
to study with more informal understandings even when 
they had been able to develop formal understandings 
(see Figure 3). Students made these movements to reor-
ganize their insufficient primitive knowledge, to con-
struct new or mathematically more acceptable images, 
and to work on different properties. Students’ self-made 
decisions and the manipulatives in the learning envi-
ronment were found to be the source of these move-
ments, which have a very important role in the growth 
of mathematical understanding (Pirie & Kieren, 1994).

Students’ folding back movements were in the form 
of needs to “work at inner layer using existing under-
standing” and to “collect at an inner layer” (Martin, 
2008, p. 72). For example, Defne mostly studied with 
more informal understandings using her existing un-
derstanding and so frequently folded back to inner 
levels (see Figure 3). Similarly, because of the difficul-
ties he had met during the mathematical tasks, Selim 
strengthened his understanding by folding back to 
inner levels and using manipulatives to collect at these 
levels (see Figure 5). For example, when his under-
standing was insufficient for quickly remembering his 
ideas that he provided at the Formalising level during 
the dilation interview, he knew what he needed and 
began to work on some of the properties of dilation as 
seen in the following sentences::

First, I choose a center for dilation. Then, k times 
the distance between the center and the original 
point is equal to the distance between the cen-
ter and the image point. It is like the example of 
Ataturk’s tomb; you know there is a place with 
lions. If we choose this place as the center, let’s 
say the distance is 100 meters between the center 
and the tomb of İsmet İnönü. In our scaled min-
iature this ration should be preserved. I mean, 
the distance was 100 meters, if I shrink it by 10, 

Figure 5: A situation in which Selim used his informal under-
standings on the physical manipulative.

then the distance has to be 10 in my miniature.

The verbal, visual, and algebraic representations were 
observed to also help students strengthen their under-
standing by giving them the opportunity to reorga-
nize their previously constructed understandings. For 
example, students folded back to as far as Primitive 
Knowing when they had to study algebraic representa-
tions of transformations. As an example, students had 
some difficulties trying to remember or use algebraic 
representations of reflections at a line even though 
they had been able to develop formal understandings. 
Hence, they applied their primitive knowledge and 
tried to reorganize their understanding of how to find 
an equation of a line whose two points were known 
or calculating the distance between a point and a line. 
The following dialogue between Elif and the research-
er can be presented as an incident of this finding:

Elif:  Figure 2 is the image of figure 1 after the 
reflection at a line. It is asking me to find 
the reflection line. Like that, this point 
(marks the point (-2, 3)) and this point 
(marks the point (1, 0)) (see Figure 6). 
Now, let’s divide the distance between 
these two points into 2, because it has 
to be same with the line, I mean the 
distance between the points and the re-
flection line has to be same. I took one 
of them, and that one. 1, 2, 3 (calculat-
ing the length of the diagonals of unit 
squares between the points (−2,3)  and 
the point (-2, 3)), here it is, one-and-
half units. Then it will pass here (draw-
ing the perpendicular bisector of the 
line segment between the points (−2,3) 
and (1, 0)). This is the reflection line.

Researcher:  I see. Can you express this line algebra-
ically? I mean can you find the equation 
of this line?

Elif:  Let me try... What was the axis? It was 2M 
- P. Let point M be on this line (marks 
the point Pʹ as the point (-3, 1), the point 
Pʹ as the point (-3, 1), the point P as the 
point (-1, -1), and finds the point M as 
the point (-2, 0) by using the equation Pʹ 
= 2M - P). We have to look for another 
point. point. Let’s look for these (marks 
the point P ʹ as the point (-2, 3), the point 
P as the point (1, 0), and finds the point 
M as (-1/2, 3/2) by using the equation Pʹ 
= 2M - P). The reflection line will pass 
both through (-2, 0) and (-1/2,3/2); we 
can find it by connecting them.
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Researcher:  I see. Then can you find the equation of 
the line that passes through these two 
points?

Elif:  Hmmm... The line where two points 
are given... I do not remember.

This finding reveals the importance of the expe-
riences that students gain with distinct represen-
tations of mathematical concepts for developing 
strong mathematical understanding. Students got a 
chance to perform folding back movements to com-
prehend multiple representations and strengthened 
their mathematical understanding by revising and 
reorganizing their previous understandings. The 
results of the research conducted by Nillas (2010) 
and Wilson and Stein (2007) support these findings. 
They stated that students may need to work within 
the inner levels of mathematical understanding to 
build relationships among multiple representations 
of mathematical concepts.

The Critical Boundary, Acting-Expressing As-
pects, and Interventions that Guide Mathemati-
cal Understanding

After folding back movements, findings point to the 
boundary between Property Noticing and Formalis-
ing, the second “don’t need” boundary in the Pirie-Ki-
eren model. Students performed activities indepen-
dent of informal levels inside the boundary to the 
extent that they could work within the levels of For-
malising and Observing. For example, Elif and Metin 
did not need to work on activities that were specific 
to different mathematical situations in the inner levels 
because they were able to use formal understandings 
of translations and dilations. However while they were 
studying rotations and reflections, they were depen-
dent on their informal understandings because they 

could not use formal understanding with these trans-
formations. This situation was also valid for Defne 
and Selim for all transformations. In this context, an-
other important characteristic of the theory became 
prominent: the complementary aspects of acting and 
expressing. Students performed physical and mental 
activities as needed, expressing their abilities with 
these activities during the development of mathemat-
ical understanding. When the aforementioned critical 
boundary is considered, because students performed 
actions and in particular provided expressions with-
in informal levels, they were disposed to using these 
kinds of understandings. In other words, although 
students had developed formal understandings about 
transformations, they could not always use these un-
derstandings because they could not find enough time 
to express the activities within formal levels.

Moreover, students used different representations 
of transformations including manipulatives during 
acting activities to ensure continuity and during 
expressing activities to provide strength of math-
ematical understanding. This situation highlights 
the importance of manipulatives and other mul-
tiple representations once more because students 
improve their mathematical understandings using 
these acting and expressing activities complemen-
tarily. These representations help students perform 
these actions and therefore progress their mathe-
matical understanding to further levels. 

Internal self-interventions and external interven-
tions derived from environmental stimulants af-
fected students’ mathematical understanding while 
working on transformational tasks. Students’ math-
ematical understandings were observed to be influ-
enced by the manipulatives in their environment and 
the tasks that were prepared with verbal, graphical, 
and algebraic representations. Manipulatives and 
verbal/graphical representations of mathematical 
concepts intervened in their process of understand-
ing in a provocative, validating, or invocative man-
ner; algebraic representations intervened in mostly 
in an invocative manner. The following sentences 
that Selim used while working on one of the physical 
manipulatives of reflection can be given as an exam-
ple of how manipulatives as invocative interventions 
influence student understanding (see Figure 7). 

Here, it is very important that the distances should 
be equal (shows the distance between the original 
point and the reflection line, and the distance be-
tween the image point and the reflection line). We 
know that there must be a reflection axis. Let’s say 
the line x = 0, the  axis, is the reflection axis for 
the coordinate system. We can easily see the image 

Figure 6: The drawings that Elif made while she was trying to 
find the reflection line.
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if we put a mirror (the reflection mirror) on the 
reflection axis.

Figure 7: Selim uses the reflection mirror while expressing his 
ideas within the present level of understanding.

This situation shows that mathematical under-
standing as an integrated and dynamic process is 
affected by manipulatives, which is one of the mul-
tiple representations of a mathematical concept. 
Students cannot be said to be independent from 
the learning context; on the contrary, they are influ-
enced by the experiences they have gained from the 
environment when trying to develop mathematical 
understanding of a concept.

Conclusions and Implications

The Pirie-Kieren model is a valuable tool that provides 
an opportunity to observe the process of students’ 
mathematical understanding and present these obser-
vations in an organized manner. The first results of the 
study pertain to the path of growth of mathematical 
understanding progressing through the levels of under-
standing. Students’ mappings of mathematical under-
standing of transformations show that they developed 
formal understandings based on their informal under-
standings. Therefore, teachers should not limit mathe-
matical understanding only to the use of formal math-
ematical definitions or formulas; they should consider 
that students cannot construct formal understanding of 
a mathematical concept without the support of infor-
mal understandings on this concept. Mathematical un-
derstanding is not a static acquisition that can be gained 
by memorizing mathematical knowledge on boards or 
in books; it is a dynamic process which develops from 
informal to formal levels by building on some basic pre-
vious knowledge (Pirie & Kieren, 1994). Results reveal 
that expecting students to have formal mathematical 
understanding without experiencing enough informal 
understanding is against the nature of the process of 
mathematical understanding. Hence, teachers should  
provide learning environments that focus on all levels 

of mathematical understanding, from Primitive Know-
ing to Inventising. Additionally, students use informal 
and formal understandings complementarily while 
developing their mathematical understanding of a con-
cept. In other words, even if they have formal under-
standing of the current topic, they may not always use 
this formal understanding. When they have a problem 
that they cannot overcome with formal understanding, 
they fold back and apply their informal understandings 
to strengthen the current mathematical understanding. 

Further results related to the growth of mathemat-
ical understanding are about primitive knowledge 
and student images of transformations. Students’ 
primitive knowledge was found to be composed of 
internal representations of some basic mathemati-
cal concepts such as vector, line, function, and plane 
that students should construct before they work 
with transformations. Teachers can try to identify 
student representations of these fundamental con-
cepts as a preliminary step to teaching transforma-
tions. In addition to primitive knowledge, student 
images were affected by the language spoken in 
daily life, the mathematical and non-mathematical 
real-world examples, as well as the experiences they 
had in lessons about transformations in middle 
school. It is important for students’ performance 
in the higher levels of mathematical understanding 
to build mathematically appropriate images based 
on their primitive knowledge. When they encoun-
ter a problem due to their images about a concept, 
they need plenty of time and effort to revise these 
images. Making the required preparations after 
determining students’ primitive knowledge, includ-
ing understanding the concepts of vectors, planes, 
ordered pairs, functions, and distance, as well as 
identifying students’ images about transformations, 
can be said to simplify the work of teachers during 
transformation lessons.

Another recommendation that can be made to 
teachers regards the implementations that students 
perform within the levels of Image Making and 
Property Noticing. Students need to work within 
these levels more than other levels while developing 
mathematical understanding of transformations. 
This shows that they had to engage in activities in 
which they are physically and mentally active. Prim-
itive knowledge and spatial ability were two determi-
nants students used to decide the level they mainly 
work in. Students who have the advantage of strong 
primitive knowledge and spatial ability can be said 
to frequently study within the level of Property No-
ticing, whereas students who are disadvantaged in 
terms of these two factors can be said to usually en-
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gage in activities within the level of Image Making. 
Therefore, teachers should spend more time and ef-
fort helping students who need to improve primitive 
knowledge or spatial ability develop a strong mathe-
matical understanding about transformations. 

Students make folding back movements either be-
cause of a problem they cannot overcome with their 
present understanding or because of a need they feel 
to express their more informal understandings in 
support of formal understanding. In both situations, 
these movements directly influence their growth of 
mathematical understanding. Encouraging students 
to fold back to the inner levels in their learning en-
vironment is recommended considering the benefits 
these movements have while students try to build 
their understanding of mathematical concepts. In 
addition to folding back, acting and expressing activ-
ities within the levels of understanding are important 
for the growth of mathematical understanding. Re-
sults show that it takes time to pass the critical “don’t 
need” boundary between the levels of Property No-
ticing and Formalising. Students preferred to study 
inside the boundary although they had developed 
formal understandings of transformations by us-
ing several representations and examining different 
properties of transformations. It may be because stu-
dents are not experienced in the levels of Formalising 
and Observing. Students may need to work on the-
orems or theorem-like statements about transforma-
tions in order to use formal understandings as often 
as they use informal understandings. In other words, 
although the lessons are implemented in a design 
where students can progress their understanding to 
the levels of Formalising and Observing, it is not easy 
for them to build a formal understanding that can be 
used routinely. To build this formal understanding, 
students may be required to work on activities with 
more abstract and advanced mathematical tasks, as 
well as to express these activities so as to strength-
en their level of mathematical understanding re-
garding Formalising and Observing using folding 
back movements. Students take their first steps in 
developing mathematical understanding with act-
ing activities and they support and strengthen their 
understanding with expressing activities within a 
new level (Pirie & Kieren, 1994). Hence, teachers 
should provide learning environments that offer op-
portunities for students to express their mathemati-
cal understandings within the informal and formal 
levels of understanding, as well as perform physical 
and mental activities while they make back and forth 
movements between the levels of understanding. 

Furthermore, students’ mathematical understand-

ings were observed to be affected by external and 
internal stimulants. These interventions are some-
times provocative as they help students reach fur-
ther levels, sometimes invocative as they make 
students fold back to inner levels, and sometimes 
validating as they confirm students’ present un-
derstanding. All of the components in the learning 
environment, from learning tools to the relations 
among different representations of the same con-
cept, should be emphasized as potential interven-
tions that may influence the growth of mathematical 
understanding. Therefore, teachers should be aware 
that every implementation they perform for a cur-
rent topic may change the direction of the growth 
of students’ mathematical understanding. Accord-
ing to the results, the main interventions were the 
manipulatives as well as the verbal, visual, and alge-
braic representations. These are external stimulants 
in the learning environment enriched with multiple 
representations of mathematical concepts. Teachers 
should apply and encourage students to work with 
these representations at all levels of mathematical 
understanding because students use these repre-
sentations when they fold back between Primitive 
Knowing and Observing, performing acting and 
expressing activities within these levels. In this way, 
multiple representations help students to strength-
en their mathematical understanding and progress 
to further levels. 

Aside from educators, there are some main rec-
ommendations for researchers who want to study 
students’ mathematical understanding of trans-
formations or any other mathematical concept. 
For example, the results of this study reveal that 
students’ primitive knowledge of transformations 
differs from each other. Students’ primitive knowl-
edge may be analyzed in detail, and mappings of 
students’ growth of mathematical understanding 
may be compared within the context of these dif-
ferences. Also, the focus may be directed to the act-
ing and expressing activities that students perform 
within the levels of Image Making and Property 
Noticing. Because students are active in these levels 
more than other levels and the activities they per-
form in these levels give direction to their process 
of mathematical understanding. Manipulatives and 
other representations of transformations in the en-
vironment were determined to influence students’ 
mathematical understanding. Therefore, studies 
that examine the role of different representations as 
external stimulants (especially physical and virtual 
manipulatives) for the growth of mathematical un-
derstanding may provide important contributions 
to the literature on mathematical understanding.



Gülkılık, Uğurlu, Yürük / Examining Students’ Mathematical Understanding of Geometric Transformations Using...

1547

References
Battista, M. T. (1990). Spatial visualization and gender dif-
ferences in high school geometry. Journal for Research in 
Mathematics Education, 21(1) 47–60.
Borgen, K. L. (2006). From mathematics learner to mathe-
matics teacher: Preservice teachers’ growth of understanding 
of teaching and learning mathematics  (Doctoral disserta-
tion). Retrieved from ProQuest Dissertations & Theses 
Global. (UMI No: 304901557) 
Davis, R. B. (1984). Learning mathematics: The cognitive 
science approach to mathematics education. New Jersey, NJ: 
Greenwood Publishing Group.
Delialioğlu, Ö. (1996). Contribution of students’ logical 
thinking ability, mathematical skills and spatial ability on 
achievement in secondary school physics (Master’s thesis, 
Middle East Technical University, Ankara, Turkey). Re-
trieved from https://tez.yok.gov.tr/UlusalTezMerkezi/ 
Dodge, C. W. (2012). Euclidean geometry and transforma-
tions. New York, NY: Courier Dover Publications. 
Duval, R. (2006). A cognitive analysis of problems of com-
prehension in a learning of mathematics. Educational Stud-
ies in Mathematics, 61(1–2), 103–131.
Edwards, L. (2003). The nature of mathematics as viewed 
from cognitive science. Paper presented at the Third Con-
gress of the European Society for Research in Mathematics, 
Bellaria, Italy. Retrieved from http://fibonacci.dm.unipi.it/
cluster–pages/didattica/CERME3/proceedings/Groups/
TG1/TG1_edwards_cerme3.pdf
Flanagan, K. A. (2001). High school students’ understand-
ings of geometric transformations in the context of a tech-
nological environment (Doctoral dissertation). Retrieved 
from ProQuest Dissertations & Theses Global. (UMI No: 
250028840). 
Glaser, B., & Strauss, A. (1967). The discovery of grounded 
theory. Hawthorne, NY: Aldine Publishing Company.
Goldin, G. A. (2000). A scientific perspective on struc-
tured, task–based interviews in mathematics education 
research. In A. E. Kelly & R. A. Lesh (Eds.), Handbook of 
research design in mathematics and science education (pp. 
517–545). Mahwah, NJ: Lawrence Erlbaum Associates.
Goldin, G. A. (2003). Representation in school mathemat-
ics: A unifying research perspective. In J. Kilpatrick, M. G. 
Martin, & S. Schifter (Eds.), A research companion to prin-
ciples and standards for school mathematics (pp. 275–286). 
Reston, VA: National Council of Teachers of Mathematics.
Grinevitch, O. A. (2004). Student understanding of abstract 
algebra: A theoretical examination (Doctoral dissertation). 
Retrieved from ProQuest Dissertations & Theses Global. 
(UMI No: 305216054). 
Gülkılık, H. (2013). Matematiksel anlamada temsillerin 
rolü: Sanal ve fiziksel manipülatifler (Doctoral dissertation, 
Gazi University, Ankara, Turkey). Retrieved from https://
tez.yok.gov.tr/UlusalTezMerkezi/ 
Hiebert, J., & Carpenter, Th. P. (1992). Learning and teach-
ing with understanding. In D. W. Grouws (Ed.), Handbook 
of research in teaching and learning of mathematics (pp. 
65–97). New York, NY: Macmilan.
Hollebrands, K. F. (2003). High school students’ under-
standings of geometric transformations in the context of 
a technological environment. The Journal of Mathematical 
Behavior, 22(1), 55–72.
Janvier, C. (1987). Translation process in mathematics 
education. In C. Janvier (Ed.), Problems of representation 
in mathematics learning and problem solving (pp. 27–31). 
Hillsdale, NJ: Lawrence Erlbaum Associates.

Jung, I. (2002). Student representation and understanding 
of geometric transformations with technology experience 
(Doctoral dissertation). Retrieved from ProQuest Disser-
tations & Theses Global. (UMI No: 305570475). 
Lesh, R., Post, T., & Behr, M. (1987). Representations and 
translations among representations in mathematics learn-
ing and problem solving. In C. Janvier (Ed.), Problems of 
representation in the teaching and learning of mathematics 
(pp. 33–40). Hillsdale, NJ: Lawrence Erlbaum Associates.
MacCullough, D. L. (2007). A study of experts’ understand-
ing of arithmetic mean (Doctoral dissertation). Retrieved 
from ProQuest Dissertations & Theses Global. (UMI No: 
304834155). 
Martin, L. C. (1999). The nature of the folding back phenom-
enon within the Pirie–Kieren Theory for the growth of math-
ematical understanding and the associated implications for 
teachers and learners of mathematics. (Doctoral disserta-
tion). Oxford University, Oxford, England.
Martin, L. C. (2008). Folding back and the dynamical 
growth of mathematical understanding: Elaborating the 
Pirie–Kieren Theory. The Journal of Mathematical Behav-
ior, 27, 64–85. 
Meel, D. E. (2003). Models and theories of mathematical 
understanding: Comparing Pirie and Kieren’s model of the 
growth of mathematical understanding and APOS theory. 
CBMS Issues in Mathematics Education, 12, 132–181
Miles, M. B., & Huberman, A. M. (1994). Qualitative data 
analysis (2nd ed.). Thousand Oaks, CA: Sage.
Ministry of Education. (2009). İlköğretim matematik der-
si 6–8. sınıflar öğretim programı. Ankara, Turkey: MEB–
Talim Terbiye Başkanlığı Yayınları.
Ministry of Education. (2010). Ortaöğretim geometri dersi 
9–10. sınıflar öğretim programı. Ankara, Turkey: MEB–
Talim Terbiye Başkanlığı Yayınları.
Ministry of Education. (2013). Ortaöğretim matematik der-
si 9– 12. sınıflar öğretim programı. Ankara, Turkey: MEB–
Talim Terbiye Başkanlığı Yayınları.
Mousley, J. (2005). What does mathematics understanding 
look like? In P. Clarkson (Ed.), Building Connections: Re-
search, theory and practice proceedings of the annual con-
ference (pp. 553–560). Retrieved from http://dro.deakin.
edu.au/eserv/DU:30005792/mousley–whatdoesmathe-
matics–2005.pdf
National Council of Teachers of Mathematics. (2000). 
Principles and standards for school mathematics. Reston, 
VA: NCTM.
Nillas, L. A. (2010). Characterizing preservice teachers’ 
mathematical understanding of algebraic relationships. In-
ternational Journal for Mathematics Teaching and Learning, 
1–24. Retrieved from http://www.cimt.plymouth.ac.uk/
journal/nillas.pdf 
Ozgun–Koca, S. A. (1998). Students’ use of representations 
in mathematics education. Paper presented at the Annual 
Meeting of the North America Chapter of the International 
Group for the Psychology of Mathematics Education, Ra-
leigh, NC. Retrieved from http://files.eric.ed.gov/fulltext/
ED425937.pdf
Patton, M. Q. (2002). Qualitative research and evaluation 
methods. Thousand Oaks, CA: Sage.
Pirie, S. E. B., & Kieren, T. E. (1991). Folding back: Dy-
namics in the growth of mathematical understanding. In F. 
Furinghetti (Ed.), Proceedings of the 15th Annual Meeting 
of the International Group for the Psychology of Mathemat-
ics Education (Vol. 3., pp. 169–176). Assisi, Italy.



E d u c a t i o n a l  S c i e n c e s :  T h e o r y  &  P r a c t i c e

1548

Pirie, S., & Kieren, T. (1992). Creating constructivist envi-
ronments and constructing creative mathematics. Educa-
tional Studies in Mathematics, 23, 505–528.
Pirie, S., & Kieren, T. (1994). Growth in mathematical un-
derstanding: How can we characterise it and how can we 
represent it? Educational Studies in Mathematics, 26(2), 
165–190.
Pirie, S. E. B., Martin, L., & Kieren, T. (1996). Folding back 
to collect: Knowing you know what you need to know. 
Proceedings from the 20th Conference of the International 
Group for the Psychology of Mathematics Education (Vol. 4., 
pp. 147–154). Valencia, Spain.
Sfard, A. (1991). On the dual nature of mathematical con-
ceptions: Reflections on processes and objects as different 
sides of the same coin. Educational Studies in Mathematics 
22(1), 1–36.
Sierpinska, A. (1994). Understanding in mathematics. Lon-
don, UK: The Falmer Press.
Skemp, R. R. (1978). Relational understanding and instru-
mental understanding. Arithmetic Teacher, 26(3), 9–15.
Soon, Y. (1989).  An investigation of van Hiele–like levels 
of learning in transformation geometry of secondary school 
students in Singapore  (Doctoral dissertation). Retrieved 
from ProQuest Dissertations & Theses Global. (UMI No: 
303765885). 
Sünker, S., & Zembat, İ. Ö. (2012). Teaching of translations 
through use of vectors in Wingeom–tr environment. Ele-
mentary Education Online, 11(1), 173–194.

Thom, J. S., & Pirie, S. E. (2006). Looking at the complex-
ity of two young children’s understanding of number. The 
Journal of Mathematical Behavior, 25(3), 185–195.
Towers, J. M. (1998). Teachers’ interventions and the growth 
of students’ mathematical understanding (Doctoral disser-
tation). Retrieved from ProQuest Dissertations & Theses 
Global. (UMI No: 304491023). 
Warner, L. B. (2008). How do students’ behaviors relate to 
the growth of their mathematical ideas? Journal of Mathe-
matical Behavior, 27, 206–227. 
Wilson, P. H., & Stein, C. C. (2007). The role of representations 
in growth of understanding in pattern–finding tasks. 
Retrieved from http://math.unipa.it/~grim/21_project/21_
charlotte_WilsonSteinPaperEdit.pdf
Yanik, H. B. (2006). Prospective elementary teachers’ growth 
in knowledge and understanding of rigid geometric transfor-
mations (Doctoral dissertation). Retrieved from ProQuest 
Dissertations & Theses Global. (UMI No: 305354163). 
Yanik, H. B. (2011). Prospective middle school mathemat-
ics teachers’ preconceptions of geometric translations. Ed-
ucational Studies in Mathematics, 78(2), 231–260.
Yanik, H. B. (2013). Learning geometric translations in a 
dynamic geometry environment. Education and Science, 
38(168), 272–287.
Yanik, H. B., & Flores, A. (2009). Understanding rigid geo-
metric transformations: Jeff ’s learning path for translation. 
The Journal of Mathematical Behavior, 28(1), 41–57.
Yavuzsoy–Köse, N. (2012). İlköğretim öğrencilerinin 
doğruya göre simetri alma bilgileri. Hacettepe Üniversitesi 
Eğitim Fakültesi Dergisi, 42, 274–286.

Appendix
Samples of the Weekly Interview Questions about Translation
1) Triangle ABC has vertices, A(−3,−5), B(−3,−2), and C(1,−5). Can you find the image of the triangle ABC under translation 
by vector  = (1, 4)? Explain your ideas and justifications in terms of the things that you noticed while finding the image.
• Can you see any relationship between the original triangle and its image? Explain your ideas.
• What do you think would happen to the image of triangle ABC if you change the length of the vector? Why?
2) Look at the following image. Figure 2 is the image of figure 1 under a translation. Can you find the translation vector? Ex-
plain your ideas and justifications in terms of the things that you noticed while finding the vector.

3) T : R2 " R2 and T (P) = P +  where  = (1, 4). Can you find the location of the point T  (3, 4)? Explain your ideas and 
justifications in terms of the things that you noticed while finding the location.


