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Abstract

This study analysed polytomous items’ psychometric properties according to nonparametric item response 

theory (NIRT) models. Thus, simulated datasets—three different test lengths (10, 20 and 30 items), three 

sample distributions (normal, right and left skewed) and three samples sizes (100, 250 and 500)—were 

generated by conducting 20 replications in 27 test conditions. Via simulated datasets, polytomous items’ 

psychometric properties were investigated through NIRT models, the Mokken Homogeneity Model (MHM) 

and the Kernel Smoothing Approach Model (KSAM). According to MHM analysis results, number of items, 

distribution of sample and sample-size factors affected items’ level of fit. As a result of scaling data according 

to MHM in this study’s test conditions, tests that generally fit MHM at weak and moderate levels, with high 

reliability, were achieved. According to KSAM analysis results, number of items, sample distribution and 

sample-size factors influenced item and test discrimination. Consequent to KSAM data analysis, tests that 

generally consisted of items with an acceptable discrimination level and with high reliability were achieved. 

In this study, producing H coefficients, through MHM, that were easy to interpret and providing, through 

KSAM, graphics with detailed information made it easier to examine complementary polytomous items’ 

psychometric properties.
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Tests used for such purposes as determining educational quality, defining educational 
needs, hiring an employee, student selection and placement and performing guidance 
and clinic services have an important place in education and psychology. Of course, they 
should have certain psychometric features related to test scores’ validity and reliability. 
Various test theories have helped to create more valid and reliable measurements and, 
as a result, to make better decisions regarding individuals. In education and psychology, 
Classical Test Theory (CTT) and Item Response Theory (IRT) are both widely used. CTT 
assumes that an individual’s observed score is the total of the true score and the error 
score, while IRT estimates an individual’s ability or latent trait from responses to test 
items (Embretson & Reise, 2000).

When IRT assumptions and model-data fit are ensured, item and ability parameters’ 
invariance occurs; this is known as the most important advantage IRT has over CTT. Item 
and ability parameters’ invariance means estimating ability parameters independently 
of item sample and estimating item parameters independently of ability sample. 
IRT’s invariance feature makes it very practicable in many applications, for instance, 
test development, computerized adaptive testing, bias studies, test equating and item 
mapping (Hambleton & Swaminathan, 1985). IRT is classified under two main categories 
as parametric IRT (PIRT) and nonparametric IRT (NIRT) (Olivares, 2005; Sijtsma & 
Molenaar, 2002).

To analyse ordered items, such as Likert-type attitude items, partial credit cognitive 
items or not ordered graded items such as multiple-choice test items, item response 
models are developed towards polytomous items in IRT (Ostini & Nering, 2006). In 
these models developed for polytomous items, a non-linear relationship between an 
individual’s latent trait and the possibility of choosing a certain category of item answer 
is explained (Embretson & Reise, 2000). Graded Response Model (GRM), part of IRT 
models developed for polytomous items, is often preferred by researchers for applications 
since it is more useful in presentations, portfolios, essays and Likert-type items with 
ordered item categories (DeMars, 2010; Ostini & Nering, 2006). To scale tests that 
consist of polytomous items by making true estimates according to GRM, evaluating 
PIRT’s assumptions and model-data fit is necessary. And to provide these assumptions 
and model-data fit, large samples are needed. At this point, NIRT models draw attention 
because they provide a practical advantage in determining psychometric properties of 
tests with fewer items and respondents (Stout, 2001). 

NIRT models are defined as statistical scaling methods that require fewer assumptions 
than PIRT models for measuring persons and items (Štochl, 2007). With their wide 
application area, NIRT models are used in ordinal scales, applied research areas, 
sociology, marketing research and health research on quality of life (Sijtsma, 2005). 
The literature reveals that two models, namely, the Mokken model and nonparametric 
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regression estimation models, are employed. These two models are themselves divided 
into sub-models. The Mokken model consists of the sub-models Monotone Homogeneity 
Model (MHM) and the Double Monotonicity Model (DMM). Nonparametric regression 
estimation models consist of such sub-models as the Kernel Smoothing Approach Model 
(KSAM), the Isotonic Regression Estimation and the Smoothed Isotonic Regression 
Estimation models (Lee, 2007; Sijtsma & Molenaar, 2002). Along with theoretical 
studies being conducted, new sub-models are being added to nonparametric regression 
estimation models.

As a NIRT model, MHM requires unidimensionality, local independence and 
monotonicity assumptions, and it defines the relationship that latent variables and items 
with homogeneous (unidimensional) and monotone item characteristic curve (ICC) 
have (Meijer & Baneke, 2004; Sijtsma & Molenaar, 2002). Both binary and polytomous 
items’ psychometric properties are examined through this model. MHM, developed 
for polytomous items, is defined as nonparametric GRM (Hemker, Sijtsma, Molenaar, 
& Junker, 1996; Sijtsma & Molenaar, 2002; Sijtsma, Emons, Bouwmeester, Nyklcek, 
& Roorda, 2008; van Onna, 2004). The main difference is that, even though ICCs are 
monotone in MHM, they are not as logistic as they are in PIRT. Moreover, this situation 
is also the foundation for classifying IRT models as parametric and nonparametric 
models. As a NIRT model, DMM requires non-intersect ICC, in other words, invariant 
item ordering assumption, in addition to MHM’s assumptions. DMM is generally used 
in determining whether scales emerging from polytomous items are in a hierarchical 
structure (Sijtsma & Molenaar, 2002).

In MHM, parameter estimates for binary and polytomous items are accomplished 
with scalability coefficient (H) (van Onna, 2004). H coefficient is interpreted as the 
nonparametric counterpart of α coefficient (item discrimination index), which exists 
in logistic models with one or two parameters (Meijer, 2004). High H coefficient 
values in MHM show that items have high discrimination power (Hemker, Sijstma, & 
Molenaar, 1995; Meijer, 2004; Meijer & Baneke, 2004; van Onna, 2004). In evaluating 
H coefficients, the criterion is determined for .30 ≤ H < .40 as weak, for .40 ≤ H < .50  
as moderate and for H ≥ .50 as strong (Mokken, 1971). In a test scaled according to the 
Mokken model, H coefficient values in item selection and the criterion above are used 
regarding H coefficient values (Meijer & Banake, 2004; Mokken, 1971; Sijtsma, Debets, 
& Molenaar, 1990; van Onna, 2004). 

In calculating the total score’s reliability in Mokken models, Cronbach’s α reliability 
coefficient, Guttman’s lambda 2 (λ) reliability coefficient and Rho coefficient are used. Rho 
coefficient, which was suggested by Mokken (1971) (Štochl, 2007), is also known as Molenaar 
Sijtsma (MS) statistics (van der Ark, 2015). MS coefficient is an appropriate statistic for 
DMM, and this coefficient is needed to interpret scales with invariant item ordering (Štochl, 
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2007; van der Ark, van der Palm, & Sijstma, 2011). The study conducted by van der Ark, 
van der Palm and Sijstma (2011) developed a new reliability coefficient for use in Mokken 
models, called latent class reliability coefficient (LCRC). Researchers emphasized that 
Cronbach’s α and Guttman’s lambda 2 (λ) reliability coefficients make biassed estimations, 
and the MS coefficient has a limiting condition as invariant item ordering. In the current 
study, even though Cronbach’s α and Guttman’s lambda 2 (λ), MS and the newly developed 
LCRC reliability coefficients have the same theoretical substructure, LCRC is indicated as the 
reliability coefficient with the fewest limiting features and is suggested for use in applications.

KSAM, one of the NIRT models, is an IRT model approach based on nonparametric 
regression estimation used in analysing polytomous items and options. In this approach, 
ICCs and option characteristic curves (OCC) are estimated with the nonparametric 
smoothing approach. OCCs show the relationship between the probability of choosing a 
particular option for a test item and individuals’ latent ability (Ramsay, 1991). ICCs are 
related to the level of latent trait measured, and they provide information about the mean 
score of an item that is estimated throughout the scale score. High item scores are related 
to high levels of measured ability. ICCs, which are monotone increasing functions, are 
evaluated as an indicator of how well items at changing levels of latent trait discriminate 
individuals (Sodano & Tracey, 2011). Sample OCCs are illustrated in Figure 1, and a 
sample ICC is illustrated in Figure 2 below (Khan et al., 2014, p. 55). 

Figure 1. Sample OCCs Figure 2. Sample ICC

Through analysis of OCCs in Figure 1, it is seen that the item in question is influential 
at all levels of latent ability. Individuals with a low level of latent trait will probably choose 
option 1, those with a moderate level of latent trait will probably choose option 4, and those 
with a high level of latent trait will choose option 7. In other words, as individuals’ scores on 
the scale increase, the probability of options with high values being chosen also increases. 
When the ICC presented in Figure 2 is analysed, vertical bold lines (specified with circles) 
show the estimated value of the curve at each ability level and at a 95% confidence interval. 
The steeper the slope of an ICC belonging to an item, the more discriminated and qualified 
the item (Ramsay, 2000). Thus in Figure 2, the ICC can be considered a discriminating item. 
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In determining tests’ efficiency in demonstrating individual differences in changing 
levels of latent trait according to KSAM (determining tests’ discrimination), graphics 
belonging to test information functions (TIF) and standard error functions (SEF) are 
examined (Ramsay, 2000). As for KSAM reliability estimates, reliability function 
(RF) graphs on tests are examined (Meijer, Tendeiro, & Wanders, 2015). Contrary to 
traditional reliability estimates, RF graphs have differentiating values instead of only one 
value throughout changing levels of latent trait. The main reason is RF graphs’ creation 
based on TIFs (Sachs, Law, & Chan, 2003). Thus, detailed information regarding tests’ 
reliability can be acquired via RF graphs in changing levels of latent trait. 

Comparison of NIRT and PIRT demonstrates that their difference rests on ICCs. In PIRT 
models, ICCs are based on a logistic or normal ogive curve, while in NIRT models, ICCs 
do not have a predetermined parametric form (Lee, Wollack, & Douglas, 2009; Sodano & 
Tracey, 2011). The need for large samples to estimate correctly in PIRT models is referred 
to as a limitation (Sijtsma & Molenaar, 2002). Furthermore, when ability distribution 
(sample distribution) is skewed, estimations according to PIRT models are less correct 
than estimations made when ability distribution is normal (Syu, 2013). Thus, achieving 
normally distributed data is necessary to estimate correctly according to PIRT models. 
Since obtaining data that would always distribute normally in applications is not possible 
and considering that large samples are needed for datasets with normal distribution, it 
can be concluded that NIRT models are more useful than PIRT models. Moreover, NIRT 
models are also found useful because of such features as making possible more detailed 
examination of datasets, making convenience in applications where parametric models 
show weak fit, and making it easy to use with data that consist of fewer items and persons 
rather than large-scale tests (Junker & Sijtsma, 2001). 

Here, studies conducted within the NIRT framework were examined, and the following 
are studies in which various scales’ psychometric properties were examined: Bedford, 
Watson, Henry, Crawford, and Deary (2011), Galindo Garre et al. (2014), Laroche, Kim, 
and Tomiuk (1999), Palm and Strong (2007), Pope (1997), Rivas, Bersabé, and Berrocal 
(2005), Roosen (2009), Sach, Law, and Chan (2003), Stewart, Watson, Clark, Ebmeier,  
and Deary (2010), Štochl, Jones, and Croudace (2012), Valois, Frenette, Villeneuve, 
Sabourin, and Bordeleau (2000), and Young, Blodgett, and Reardon (2003); comparison 
of PIRT and NIRT with regards to estimating scales’ psychometric properties: Dyehouse 
(2009), Gouge (2008), Kogar (2015), Meijer and Baneke (2004), Patsula and Gessaroli 
(1995), Sijtsma et al. (2008), and Zhou (2011); studies in which short versions of scales 
are being developed: Aderka et al. (2013), Aljubaily (2010), Gouge (2008), Khan, Lewis, 
and Lindenmayer (2011), Sodano, Tracey, and Hafkenscheid (2014); studies in which 
model-data fit in PIRT models are explored to NIRT models: Douglas and Cohen (2001), 
Emons (2008), Lee (2007), Lee et al. (2009), Liang, Wells, and Hambleton (2014), Sueiro 
and Abad (2011), and Syu (2013) and studies in which items are chosen according to 
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NIRT in simulative test conditions: Straat, van der Ark, and Sijtsma (2014). In these 
studies, which generally use large samples and long tests, a limited number show that 
NIRT is useful in short tests and small samples—the observed advantage of NIRT over 
PIRT (Aderka et al., 2013; Galindo Garre et al., 2014; Laroche et al., 1999; Lee et al., 
2009; Meijer & Baneke, 2004; Palm & Strong, 2007; Patsula & Gessaroli, 1995; Rivas et 
al., 2005; Sijstma et al., 2008; Sueiro & Abad, 2011; Young et al., 2003). 

A literature review has revealed that only one study regarding NIRT has been conducted 
in Turkey. In studies conducted abroad, researchers use MHM—a NIRT model—testing 
MHM’s monotonicity assumption with KSAM or using MHM and KSAM separately for 
analysis based on NIRT. Although the literature stresses NIRT’s usefulness in short tests 
and small sample sizes, an analysis conducted on studies in the NIRT framework has 
discovered that too few studies have been conducted to show the theory’s advantages. 
Generally, long tests of polytomous items applied to large samples in real applications 
have been used. It is important to determine psychometric properties of polytomous-
item tests that are applied in small samples in education and psychology, in different 
test conditions, with IRT models that estimate item parameters independently of ability 
sample and estimate ability parameters independently of item sample. The literature 
emphasizes that short tests applied to small samples accord with NIRT models that are 
IRT models. Nevertheless, polytomous items’ psychometric properties have not been 
analysed according to MHM and KSAM (NIRT models) under different testing conditions, 
in small samples with various distribution features and on small tests. For these reasons, it 
was necessary to analyse polytomous items’ psychometric properties via simulative data 
in small test conditions and in small samples with various distribution features. 

Purpose
This study’s purpose was to analyse simulated polytomous items’ psychometric properties 

under different test conditions with NIRT models. Therefore, the following are research 
questions: (i) what are the items’ model-data fit levels? (ii) what are the standard error values 
estimated for model-data fit values belonging to items? (iii) what are model-data fit values for 
tests, and what are standard error values estimated for model-data fit values belonging to tests? 
(iv) what are reliability values (LCRC, α, λ) estimated for tests gathered under different test 
conditions according to MHM? Answers are also sought for the following: (i) how efficient 
are items and item options (discrimination of items) at different levels of changing latent 
trait? (ii) how efficient are tests in determining individual differences (test discrimination) at 
different levels of latent trait? (iii) how are reliability functions at different levels of latent trait 
distributed according to KSAM under different test conditions?

This study is important in analysing simulated polytomous items’ psychometric properties, 
using two different NIRT models, while studying short tests and small samples with various 
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distribution features. Thus, this study conducted comparative analyses according to two different 
models, and under which conditions NIRT models showed better results was determined. 
Additionally, this study is expected to offer researchers important information regarding NIRT 
models’ testing practicality. Considering that in practice, researchers often encounter small 
samples without normal distribution, conditions in which skewed sample distribution is present 
were analysed, and this analysis is expected to contribute highly to the literature.

Method
Aiming to determine polytomous items’ psychometric properties generated via 

simulated data under different test conditions, this is a fundamental research study. 

Data Production
This research is conducted as a Monte Carlo simulation study. In line with its purpose, 

WinGen3 software was used in generation of simulated data, with 20 replications in 27 
different test conditions. Different test conditions generated are presented in Table 1, after 
which related explanations are provided. 

Table 1
Test Conditions 

Sample Size Distribution of Sample Test Length (Number of Items)
10  20 30

100
Normal Distribution X X X

Positively Skewed Distribution X X X
Negatively Skewed Distribution X X X

250
Normal Distribution X X X

Positively Skewed Distribution X X X
Negatively Skewed Distribution X X X

500
Normal Distribution X X X

Positively Skewed Distribution X X X
Negatively Skewed Distribution X X X

Sample size. In analyses conducted in the NIRT framework, Molenaar (2001) stated 
that sample size with 300–400 persons is adequate, while Ramsay (1991) mentioned that 
a sample with at least 100 persons is needed. Considering that NIRT is useful in short tests 
and small samples, and according to the literature, sample sizes considered small (100, 
250 and 500 persons) were determined for this study.

Test length. For this study, tests with a limited number of items (10, 20 and 30) that 
would demonstrate NIRT models’ advantages were preferred. 

Ability distribution and item parameters. In this research, ability distribution generated 
data as normal and positively and negatively skewed, while item parameters generated data 
convenient to GRM with normal and uniform distributions. Regardless of NIRT analysis, the 
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main reason data were generated according to GRM (a PIRT model) is that GRM is a special 
form of MHM, and data that adjusts with GRM also adjusts with MHM (Sijtsma et al., 2008). 
Ability distributions were generated in three conditions, while standard deviation values were 
fixed. Related conditions were chosen as normal distribution N–(0, 1), positively skewed 
distribution N–(−1, 1) and negatively skewed distribution N–(1, 1). In this study, skewness 
and kurtosis coefficients gathered from ability distributions were valued between −1 and 1. 
According to Bulmer (1979), these values showed a moderately skewed distribution. Thus, 
in this study, ability distributions were determined to be moderately skewed, adhering to the 
literature. Within the study’s scope, for item parameters, b parameter was determined as N–(0, 
1) with normal distribution, while a parameter was determined to be U ∈ [1,2] and uniform.

This study presumes that measurement tools used to determine affective features generally 
consist of Likert-type scales rated on five points, and items were generated accordingly. 

Data Analysis
In data analysis according to MHM, the R 3.1.3 programme was used, and according 

to KSAM, TestGraf software was used. MHM analyses were conducted with the Mokken 
package developed by van der Ark (2007), and Hi, SEi, H and SE values were acquired. 
Reliability estimates of tests according to MHM were calculated with codes developed by 
van der Ark (2015) for the R programme.

TestGraf software, used in determining polytomous items’ psychometric properties 
according to KSAM, is based on graphical display (Ramsay, 2000). Because TestGraf 
software outputs are also graphical, results in comments are intuitional and may vary 
from one person to another. For this reason, Khan (2010), Khan et al. (2011) and Santor, 
Ascher Svanum, Lindenmayer, and Obenchain (2007) developed some criteria for 
interpreting graphics peculiar to their study. Related criteria are arranged by considering 
test conditions in this study, summarized and presented below.

Criterion 1. OCCs should demonstrate distribution that covers all changing levels of 
a latent trait.

Criterion 2. OCCs should demonstrate rapid change in changing levels of the latent trait. 

Criterion 3. In areas where each option is selected with the highest possibility, other 
options must be aligned from left to right with regard to the option’s score (1–5). For 
example, the area in which option number two is chosen with the highest possibility 
should fall between areas in which options number one and number three are chosen with 
the highest probability. 

Criterion 4. Items’ obtained scores should be aligned throughout changing levels of the 
latent trait, meaning ICCs should have values that range from the lowest to the highest score. 
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While conducting this analysis, median values of options should be considered. For this study, 
which consists of five-point scale items, items should have ICCs valued at four or more.

Criterion 5. Throughout changing levels of the latent trait, ICCs should have a steep slope.

Criterion 6. Items’ biserial correlation coefficients should have a value of at least .50. 

Among these criteria, the first three were used in evaluating OCCs and the last three in 
evaluating ICCs. During the evaluation process, if items met all six criteria defined above, they 
were categorized as very good; if they met at least four, they were categorized as good; if they 
met at most three, they were categorized as weak; if they did not meet any, they were categorized 
as poor. In the present study, within the determined test conditions’ scope, 1080 graphs were 
evaluated, 540 belonging to OCCs and 540 to ICCs. Graphical analysis according to KSAM and 
evaluating graphics that were intuitional can be considered an important limitation of this model. 
Nevertheless, this limitation can be overcome by ensuring graphic evaluations’ reliability. To do 
so, another independent evaluator (expert) was employed, as in Santor et al.’s study (2007), and 
in addition, the evaluator’s consistency with herself was examined. For this, the evaluator and 
the expert analysed randomly chosen items from each test condition (27 conditions). Also, 27 
items and their graphics were chosen randomly to determine the evaluator’s ‘self-reliability’. To 
analyse the evaluator’s consistency with the expert, 27 different randomly chosen items and their 
54 graphics were considered and to analyse the evaluator’s consistency with herself 27 different 
randomly chosen items (different from evaluator and the expert) and their 54 graphics were 
considered. Determination of both self-consistency and evaluator–expert consistency benefitted 
from the following equation (Tavsancil & Aslan, 2001): 

Results revealed that the evaluator’s consistency with herself was .94, and the 
evaluator’s consistency with the outside expert was .82. Therefore, graphs were analysed 
reliably according to determined criteria.

Findings
In this research, 540 data files—simulated datasets generated with 20 replications—

were analysed separately. In analysis according to MHM, related values were interpreted 
by calculating the mean of all values (Hi, SEi, H, SE, LCRC, α, λ) gathered in determined 
test conditions. KSAM analyses were conducted on 27 datasets that provided values 
closest to Hi and SEi mean values, gathered from MHM analysis for each test condition. 
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Model-data Fit Levels Belonging to Items Gathered according to MHM in 
Different Test Conditions

In determining level of fit to MHM of model-data fit values (Hi) gathered in different 
test conditions for 10, 20 and 30 items, criteria defined by Mokken (1997) and Sijtsma et 
al. (1990) were used. As a result of analysis within these criteria, items’ fit levels to MHM 
are displayed in Table 2. 

Table 2
Items’ Fit Levels to MHM in Different Test Conditions

Distribution of Sample  Normal  Positively Skewed Negatively Skewed
Sample Size 100 250 500 100 250 500 100 250 500

Fit Level

10 item
Strong - - - - - - 1 - -

Moderate 6 4 6 - - 5 6 1 6
Weak 4 6 4 5 4 5 3 8 4

20 item
Strong 1 1 - - - - - - -

Moderate 9 15 11 6 4 6 - 2 8
Weak 10 4 9 13 14 14 5 13 11

30 item
Strong 3 - - 1 - - - 1 -

Moderate 20 1 13 14 14 13 25 21 3
Weak 7 18 16 15 14 17 5 8 18

Table 2 shows that items generally had weak and moderate fit levels to MHM. Along 
with this, some items did not fit MHM. When these items were omitted from tests and 
analyses were redone, the number of items that demonstrated weak fit diminished. 
However, generally, items were compatible with MHM. 

Standard Error Values (SEi) Estimated for Model-data Fit Values, Belonging to 
Items Gathered according to MHM in Different Test Conditions

The lowest (SEithelowest) and the highest (SEithehighest) values of standard error values (SEi) 
estimated for model data fit values, belonging to items gathered according to MHM in different 
test conditions, are displayed in Table 3 and are aligned according to number of items.

Table 3
Standard Error Values Estimated for Model Data Fit of Items in Different Test Conditions (SEi)
                   �Distribution of 

Sample Normal Positively Skewed Negatively Skewed

                   Sample Size 100 250 500 100 250 500 100 250 500
                   SE Values

10 item
SEithelowest 0.05 0.04 0.02 0.06 0.03 0.03 0.06 0.04 0.02

SEithehighest 0.06 0.04 0.03 0.08 0.04 0.04 0.07 0.06 0.03

20 item
SEithelowest 0.05 0.03 0.02 0.05 0.03 0.02 0.05 0.03 0.02
SEithehighest 0.07 0.04 0.03 0.06 0.04 0.04 0.09 0.05 0.03

30 item
SEithelowest 0.05 0.03 0.02 0.05 0.03 0.02 0.05 0.03 0.02

SEithehighest 0.06 0.04 0.03 0.09 0.05 0.04 0.07 0.05 0.03
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SEi values estimated for model-data fit values belonging to items in Table 3 decreased 
as sample size increased. Moreover, SEi values that were generally gathered from skewed 
distributions were higher than SEi values gathered from normal distributions. 

Model-data Fit Values (H) Belonging to Tests and Standard Error Values (SE) 
Estimated for These Values Belonging to Tests Gathered according to MHM in 
Different Test Conditions

In different test conditions, model-data fit values (H) belonging to tests and gathered 
according to MHM and standard error values (SE) estimated for these values are presented 
in Table 4. In interpreting these values, criteria determined by Mokken (1997) and Sijtsma 
et al. (1990) were considered.

Table 4
Model Data Fit Values (H) for Tests in Different Test Conditions and Standard Error Values Estimated for 
These Values (SE)

Distribution of Sample Normal  Positively Skewed Negatively Skewed

Sample Size 100 250 500 100 250 500 100 250 500
H-SE

10 item
H 0.38* 0.38* 0.41** 0.29 0.29 0.40** 0.43** 0.35* 0.39*

SE 0.04 0.03 0.02 0.04 0.03 0.02 0.04 0.03 0.02

20 item
H 0.40** 0.42** 0.39* 0.36* 0.35* 0.37* 0.27 0.34* 0.37*

SE 0.04 0.02 0.02 0.04 0.03 0.02 0.04 0.02 0.02

30 item
H 0.44** 0.32* 0.37* 0.39* 0.36* 0.38* 0.43** 0.42** 0.32*

SE 0.03 0.02 0.02 0.04 0.03 0.02 0.04 0.03 0.02
*weak, **moderate, *** strong

Table 4 reveals that H values gathered for tests in different test conditions were 
valued between .27 and .43. According to these values, tests generally have weak and 
moderate fit levels to MHM. Along with this, some test conditions did not fit MHM: 
positively skewed distribution, sample size of 100 and 250 persons, tests with 10 items 
and negatively skewed distribution with a sample size of 100 persons and 20 items. When 
SE values were estimated for tests’ H values, they were between .02 at a minimum and .04 
at a maximum. SE values decreased as the sample size increased. Thus it was concluded 
that as sample size increased, errors in estimates decreased.

Reliability Values (LCRC, α and λ) Estimated for Tests in Different Test Conditions
Findings regarding reliability values (LCRC, α and λ) estimated for tests in different 

test conditions are displayed in Table 5 according to item number order.
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Table 5
Reliability Values Estimated for Tests in Different Test Conditions

Distribution of Sample Normal  Positively Skewed Negatively Skewed
Sample Size 100 250 500 100 250 500 100 250 500

Reliability Values

10 item
LCRC 0.85 0.84 0.85 0.79 0.80 0.83 0.87 0.82 0.84

α 0.83 0.83 0.84 0.76 0.77 0.82 0.85 0.80 0.83
λ 0.84 0.83 0.84 0.77 0.78 0.82 0.85 0.81 0.83

20 item
LCRC 0.92 0.92 0.91 0.91 0.91 0.91 0.88 0.90 0.91

α 0.91 0.92 0.91 0.90 0.90 0.90 0.84 0.89 0.90
λ 0.91 0.92 0.91 0.90 0.90 0.90 0.85 0.89 0.90

30 item
LCRC 0.95 0.92 0.94 0.95 0.94 0.94 0.95 0.94 0.92

α 0.95 0.92 0.94 0.93 0.93 0.93 0.95 0.95 0.92
λ 0.95 0.92 0.94 0.94 0.93 0.93 0.95 0.94 0.92

As Table 5 shows, LCRC, α and λ reliability values were high in all study test 
conditions. In datasets in which samples were distributed normally and negatively skewed, 
as number of items increased, reliability values also increased. In conditions in which 
samples were positively skewed, generally, number of items and sample size increased 
together with reliability values. With increased sample size and number of items, LCRC, 
α and λ reliability coefficients had values close to each other. Furthermore, α reliability 
coefficient, which was gathered from all test conditions in Table 5, provided the lower 
reliability limit compared with LCRC and λ, just as Sijtsma and Molenaar (1987) and van 
der Ark, van der Palm, and Sijtsma (2011) indicated. 

Items and Item Options’ Efficiency in Changing Levels of Latent Trait accor-
ding to KSAM in Different Test Conditions 

In determining items and item options’ efficiency according to KSAM, ICCs belonging 
to items and OCCs belonging to options were examined. These graphs were evaluated 
with criteria determined by Khan (2010), Khan et al. (2011) and Santor et al. (2007), and 
results are presented in Table 6. 

As a result of examinations conducted according to KSAM, Table 6 shows that as 
the sample size increased, the number of items with high item discrimination power 
increased as well. Moreover, in this study’s test conditions and in KSAM analysis, sample 
distribution impacted items and options’ discrimination. From findings obtained at all 
test lengths, items with the highest discrimination were achieved in samples with normal 
distribution, while items with the lowest discrimination were generally obtained from 
samples with positively skewed distribution.
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Tests’ Effectiveness in Determining Individual Differences in Changing Levels 
of Latent Trait according to KSAM in Different Test Conditions

Determining tests’ efficiency at demonstrating individual differences in different test 
conditions, that is, determining tests’ discrimination, benefitted from TIF and SEF graphs. In this 
study’s test conditions, the lowest and highest approximate values of these graphs, regardless of 
emphasizing sample sizes and sample distribution pattern, are summarized in Table 7.

Table 7
The Lowest and the Highest Values of TIFs and SEFs Gathered for Tests in Different Test Conditions

TIFthelowest TIFthehighest SEFthelowest SEFthehighest

10 item 0.040 0.160 2.500 5.000
20 item 0.026 0.070 3.750 6.100
30 item 0.015 0.041 4.900 8.000

As can be deduced from Table 7, as number of items increased, TIFs decreased and 
SEFs increased. The test with the highest discrimination according to KSAM analysis 
is specified as the test with the fewest items. A related condition was achieved from the 
500-person sample with positively skewed distribution. Moreover, the test with the lowest 
discrimination according to KSAM analysis was that with the highest number of items. 
A related condition was achieved from the 250-person sample with normal distribution. 
According to findings, increase or decrease in general TIFs or SEFs values did not 
demonstrate a particular pattern in regard to distribution and sample sizes. However, 
increase or decrease in TIFs or SEFs values demonstrated a particular pattern in regard to 
number of items. As the number of items increased, TIFs decreased and SEFs increased. 
A possible reason could be inclusion of items with low levels of discrimination. When 
these items are omitted and analyses redone, an increase in TIFs and a decrease in SEFs 
may occur. Furthermore, an increase in the number of items with high discrimination will 
cause an increase in TIFs. 

Table 6
Evaluation Results on the Analysis of Items According to KSAM

Distribution of 
Sample Normal Positively Skewed Negatively Skewed

Sample Size 100 250 500 100 250 500 100 250 500

10
 It

em

Very good 1 4 3 0 3 2 1 1 0
Good 6 6 5 4 3 3 5 4 9
Weak 3 0 2 5 4 5 4 5 1
Poor 0 0 0 1 0 0 0 0 0

20
 It

em

Very good 1 0 6 1 1 3 0 2 1
Good 10 13 7 7 7 5 1 4 9
Weak 8 7 7 12 11 12 13 13 10
Poor 1 0 0 0 1 0 6 1 0

30
 It

em

Very good 1 0 5 0 0 0 0 0 0
Good 10 10 18 9 14 14 3 11 9
Weak 19 19 6 17 16 14 26 18 19
Poor 0 1 1 4 0 2 1 1 2
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Reliability Functions of Tests Estimated in Changing Levels of Latent Trait in 
Different Test Conditions according to KSAM

For this study, graphs belonging to RFs were analysed to determine test reliability according 
to KSAM. These graphs’ lowest and highest approximate values are shown in Table 8.

Table 8
The Lowest and the Highest Values of RFs Gathered According to KSAM in Different Test Conditions

Distribution of Sample Normal  Positively Skewed Negatively Skewed
Sample Size 100 250 500 100 250 500 100 250 500

RF

10 item
rthelowest 0.68 0.78 0.78 0.65 0.73 0.78 0.77 0.69 0.82

rthehighest 0.83 0.86 0.86 0.78 0.80 0.88 0.87 0.82 0.88

20 item
rthelowest 0.84 0.90 0.87 0.83 0.84 0.86 0.78 0.86 0.86

rthehighest 0.91 0.93 0.94 0.89 0.89 0.92 0.89 0.90 0.91

30 item
rthelowest 0.92 0.86 0.92 0.89 0.89 0.91 0.90 0.91 0.89

rthehighest 0.93 0.92 0.95 0.93 0.93 0.94 0.93 0.94 0.93

GF values gathered from tests’ KSAM analysis in different test conditions showed generally 
high reliability values. Evaluation of all test conditions together showed that RFs’ lowest value 
resulted from a 100-person sample with positively skewed distribution for a 10-item test; the 
highest value resulted from a 500-person sample with normal distribution for a 30-item test. 
With an increased number of items and sample sizes, RF values also increased.

In determining item and test discrimination, this study found that MHM and KSAM 
analyses of simulated datasets generated with 20 replications produced differing results. 
These results are compared in Tables 9 and 10, respectively. Table 11 comparatively 
presents this study’s test reliability estimates according to MHM and KSAM. 

Table 9
Comparison of Items’ Discrimination According to MHM and KSAM 
Number of Item Conditions MHM KSAM

10 item
Best condition NsD, N = 100 ND, N = 250
Worst condition PsD, N = 250 PsD, N = 100

20 item
Best condition ND, N = 250 ND, N = 500
Worst condition NsD, N = 100 NsD, N = 100

30 item
Best condition ND, N = 100 ND, N = 500
Worst condition ND, N = 250 PsD, N = 100

ND: Normal Distribution, PsD: Positively Skewed Distribution, NsD: Negatively Skewed Distribution, N: 
Sample Size

Conditions that determine items’ discrimination quality according to MHM and KSAM 
are generally seen to differ in Table 9. Nevertheless, along with increased number of 
items, conditions that determine their discrimination according to MHM and KSAM were 
remarkably similar in sample distribution. Results regarding comparison of discrimination of 
tests consisting of polytomous items according to MHM and KSAM are shown in Table 10. 
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Table 10
Comparison of Discrimination of Tests According to MHM and KSAM
Test Length Conditions MHM KSAM

10 item
Best condition NsD, N = 100 PsD, N = 500

Worst condition PsD, N = 100
PsD, N = 250

ND, N = 100
NsD, N = 250

20 item
Best condition ND, N = 250 NsD, N = 100

Worst condition NsD, N = 100 ND, N = 500

30 item
Best condition ND, N = 100 NsD, N = 500

Worst condition ND, N = 250
NsD, N = 500 ND, N = 250

ND: Normal Distribution, PsD: Positively Skewed Distribution, NsD: Negatively Skewed Distribution, N: 
Sample Size

Table 10 reveals that almost all conditions differ in determination of quality of test 
discrimination according to MHM and KSAM. Table 11 displays tests’ comparative 
estimated reliability values according to MHM and KSAM.

Table11
Comparison of Reliability of Tests According to MHM and KSAM
Test Length Conditions (r) MHM KSAM

10 item
Best condition (r) NsD, N = 100 (0.87) PsD, N = 500 (0.88)

NsD, N = 500 (0.88)
Worst condition (r) PsD, N = 100 (0.79) PsD, N = 100 (0.65)

20 item
Best condition (r) ND, N = 100 (0.92)

ND, N = 250 (0.92) ND, N = 500 (0.94)

Worst condition (r) NsD, N = 100 (0.88) NsD, N = 100 (0.78)

30 item
Best condition (r)

ND, N = 100 (0.95)
PsD, N = 100 (0.95)
NsD, N = 100 (0.95)

ND, N = 500 (0.95)

Worst condition (r) ND, N = 250 (0.92)
NsD, N = 500 (0.92) ND, N = 250 (0.86)

ND: Normal Distribution, PsD: Positively Skewed Distribution, NsD: Negatively Skewed Distribution, N: 
Sample Size, r = For MHM LCRC coefficient, for KSAM the lowest and the highest values of RF

Table 11 also reveals the best conditions in which reliability values were highest and 
the worst conditions in which reliability values were lowest. Furthermore, conditions 
in which reliability coefficients obtained the highest and lowest values according to 
MHM and KSAM analyses were similar, especially in sample distribution. Moreover, 
even though KSAM reliability estimates were lower than MHM reliability estimates, 
generally, both MHM and KSAM reliability estimates were high. 

Discussion
This study aimed to analyse polytomous items’ psychometric properties according to 

MHM and KSAM, which are NIRT models, in different test conditions consisting of 10, 
20 and 30 items, of samples with normal, positively and negatively skewed distribution 
and of samples of 100, 250 and 500 persons. Therefore, Hi coefficients, which are easy to 
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comment on, were produced in analysis conducted according to MHM, while in analysis 
conducted according to KSAM, detailed information was obtained through ICC and OCC 
graphs. The research determined that analysis according to MHM and KSAM produced 
different results. Only with increased numbers of items and persons do these models 
produce similar results. In addition, in test reliability estimates, KSAM provided lower 
estimates compared to MHM, and these values estimated with increased numbers of 
items and persons were determined to approach each other. 

Study results show that tests gathered from conditions with samples with skewed 
distribution can be scaled according to MHM and KSAM, which are NIRT models. 
Additionally, this shows that NIRT models are appropriate in determining items’ 
psychometric properties when datasets cannot attain normal distribution in applications. 
However, that skewed distribution conditions according to Bulmer’s (1979) criteria, 
chosen from the literature, were at a medium level should be considered; thus, stated 
results were reached for datasets with skewed distribution at a medium level.

The study determined that number of items, sample distribution and sample-size factors 
influenced items and tests’ level of fit to MHM. Generally, as sample size increased, items 
and tests’ fit level to MHM increased as well. In the literature, many studies’ findings 
(Chon, Lee, & Ansley, 2007; Douglas & Cohen, 2001; He & Wheadon, 2013; Lee et al., 
2009; Reeve & Fayers, 2005; Sueiro & Abad, 2011) regarding the fact that as sample size 
increases, model data fit is provided for both PIRT and NIRT, show similarity to this study’s 
finding. For tests with 30 items, however, this finding was not obtained from data. When 
SEi values estimated for Hi values gathered according to MHM, belonging to items in 
different test conditions were examined, these values decreased as sample size increased. 
This finding bears similarity to that of studies conducted by Smits, Timmerman, and Meijer 
(2012) and Kogar (2015). Moreover, SEi values from skewed distributions were higher 
than SEi values from normal distributions. This finding supported Kuijpers, van der Ark, 
and Croon (2013). In this study’s test conditions, tests generally fit MHM. This finding 
paralleled others that suggest tests applied to small samples fit MHM (Junker & Sijtsma, 
2001; Meijer, 2004; Molenaar, 2001; Stochl, Jones, & Croudace, 2012). Nevertheless, 
tests not fitting MHM were found in conditions with skewed sample distributions. SEi 
values obtained for tests decreased with increased sample size and number of items. This 
finding resembled that of studies conducted by Smits et al. (2012) and Kogar (2015). 

Estimates within the MHM context determined that reliability values increased 
depending on increase in number of items and in sample size. This finding parallelled 
that of many other studies (Pozehl, 1990; Wang, 2004; Zenisky, Hambleton, & Sireci, 
2002; Zhang, 2010) conducted within PIRT’s scope. In addition, LCRC reliability values, 
estimated according to MHM of tests with polytomous items, were high. This finding 
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supports that of Rivas et al. (2005), who suggested achieving tests with high reliability by 
using scaling according to MHM. 

In this study, number of items, sample distribution and sample-size factors influenced 
items and options’ effectiveness, in other words, in determining items’ discrimination 
according to KSAM. KSAM analysis demonstrated that as sample size increased, the 
number of high-discrimination items increased as well. In studies within the PIRT context, 
Bock (1972), De Ayala and Sava Bolesta (1999), DeMars (2003) and He and Weadon 
(2013) emphasized that sample size and number of items influenced item discrimination; 
as sample size increased, items with high discrimination were obtained. In this study, 
findings of KSAM analysis, a NIRT model, paralleled findings of researchers studying 
within PIRT’s scope. In determining tests’ discrimination, TIFs and SEFs were examined; 
at points at which TIFs reached high values, SEFs had low values. The literature has 
observed that at points where TIFs reached high values, errors decreased (Hambleton, 
Swaminathan, & Rogers, 1991). In KSAM analysis, increased RF values obtained 
with an increased number of items and sample size were determined. The finding that 
suggested increased reliability values parallel increased number of items and sample size 
bears similarity to many previous PIRT findings (Pozehl, 1990; Wang, 2004; Zenisky et 
al., 2002; Zhang, 2010). 

Suggestions
According to this study’s results, while producing H coefficients, which are easy 

to interpret in MHM analysis according to detailed graphs, were achieved in analysis 
conducted according to KSAM. These models can thus be considered complementary. 
When studying with small sample groups, when sample distributions show differences 
in normal distribution or when model-data fit cannot be reached for PIRT models, in 
aims such as scale development, determining scales’ psychometric properties, both NIRT 
models can be used together. In KSAM analysis, OCCs and ICCs were seen to provide 
detailed information regarding discrimination of items and options. From this point forth, 
analysis can be conducted according to KSAM for achievement tests, for weighing options, 
increasing distractor quality and for tests developed to measure affective characteristics 
such as interest, attitude and anxiety, for topics such as uniting items’ options. A similar 
study could be conducted outside this study’s test conditions, that is, a study using larger 
samples, longer tests or smaller samples, shorter tests or generated test conditions in 
which ability distributions are skewed with wider gaps.



510

EDUCATIONAL SCIENCES: THEORY & PRACTICE

References
Aderka, I. M., Pollack, M. H., Simon, N. M., Smits, J. A. J., van Ameringen, M., Stein, M. B., 

& Hofmann, S. G. (2013). Development of a brief version of the social phobia inventory 
using item response theory: The mini-spin-r. Behavior Therapy, 44(4), 651–661. http://dx.doi.
org/10.1016/j.beth.2013.04.011 

Aljubaily, H. Y. (2010). Measuring university students’ perceptions of characteristics of ideal 
university instructor in Saudi Arabia and the United States: An application of nonparametric 
item response theory study (Doctoral Dissertation). Available from ProQuest Dissertations and 
Theses database. (UMI No. 3434898)

Bedford, A., Watson, R., Henry, J. D., Crawford, J. R., & Deary, I. J. (2011). Mokken scaling 
analyses of the Personal Disturbance Scale (DSSI/sAD) in large clinical and non-clinical 
samples. Personality and Individual Differences, 50(1), 38–42. http://dx.doi.org/10.1016/j.
paid.2010.08.017  

Bock, R. D. (1972). Estimating item parameters and latent ability when responses are scored in two 
or more nominal categories. Psychometrika, 37(1), 29–51. 

Bulmer, M. G. (1979). Principles of statistics. New York, NY: Dover Publications. 

Chon, K. H., Lee, W. C., & Ansley, T. N. (2007). Assessing IRT model data fit for mixed format 
tests. University of Iowa: Center for Advanced Studies in Measurement and Assessment.

De Ayala, R. J., & Sava-Bolesta, M. (1999). Item parameter recovery for the nominal response 
model. Applied Psychological Measurement, 23(1), 3–19.

DeMars, C. E. (2003). Sample size and the recovery of nominal response model item 
parameters. Applied Psychological Measurement, 27(4), 275–288. http://dx.doi.
org/10.1177/0146621603253188 

DeMars, C. E. (2010). Item response theory: Understanding statistics measurement. New York, 
NY: Oxford University Press.

Douglas, J., & Cohen, A. (2001). Nonparametric item response function estimation for assessing 
parametric model fit. Applied Psychological Measurement, 25(3), 234–243. http://dx.doi.
org/10.1177/01466210122032046 

Dyehouse, M. A. (2009). A comparison of model data fit for parametric and nonparametric item 
response theory models using ordinal level ratings (Doctoral Dissertation). Available from 
ProQuest Dissertations and Theses database. (UMI No. 3379330)

Embretson, S. E., & Reise, S. P. (2000). Item response theory for psychologists. New Jersey, NJ: 
Lawrence Erlbaum Associates. 

Emons, W. H. M. (2008). Nonparametric person-fit analysis of polytomous item scores. Applied 
Psychological Measurement, 32(3), 224–247. http://dx.doi.org/10.1177/0146621607302479 

Galindo-Garre, F., Hendriks, S. A., Volicer, L., Smalbrugge, M., Hertogh, C. M., & van der Steen, 
J. T. (2014). The Bedford Alzheimer nursing-severity scale to assess dementia severity in 
advanced dementia: A nonparametric item response analysis and a study of its psychometric 
characteristics. American Journal of Alzheimer’s Disease and Other Dementias, 29(1), 84–90. 
http://dx.doi.org/10.1177/1533317513506777 

Gouge, A. P. (2008). Item response theory analyses of the personality assessment inventory in 
samples of methadone maintenance patients and university students (Doctoral Dissertation). 
Available from ProQuest Dissertations and Theses database. (UMI No. NR45690)



511

Sengul Avsar, Tavsancil / Examination of Polytomous Items’ Psychometric Properties According to Nonparametric Item...

Hambleton, R. K., & Swaminathan, H. (1985). Item response theory: principles and application. 
Boston, MA: Kluwer Academic Publishers Group. 

Hambleton, R. K., Swaminathan, H., & Rogers, H. J. (1991). Fundamentals of item response 
theory. Newbury Park, CA: Sage.

He, Q., & Wheadon, C. (2013). The effect of sample size on item parameter estimation for the 
partial credit model. International Journal of Quantitative Research in Education, 1(3), 297–315. 
http://dx.doi.org/10.1504/IJQRE.2013.057692 

Hemker, T. B., Sijtsma, K., & Molenaar, I. W. (1995). Selection of unidimensional scales from 
a multidimensional item bank in the polytomous Mokken IRT model. Applied Psychological 
Measurement, 19(4), 337–352. http://dx.doi.org/10.1177/014662169501900404 

Hemker, B. T., Sijtsma, K., Molenaar, I. W., & Junker, B. W. (1996). Polytomous IRT models and 
monotone likelihood ratio of the total score. Psychometrika, 61(4), 679–693.

Junker, B., & Sijtsma, K. (2001). Nonparametric item response theory in action: An overview 
of the special issue. Applied Psychological Measurement, 25(3), 211–220. http://dx.doi.
org/10.1177/01466210122032028 

Khan, A. (2010). Use of non-parametric item response theory to develop a Shortened Version of 
the Positive and Negative Syndrome Scale (PANSS) for patients with schizophrenia (Doctoral 
Dissertation). Available from ProQuest Dissertations and Theses database. (UMI No. 3438465)

Khan, A., Lewis, C., & Lindenmayer, J. P. (2011). Use of non-parametric item response theory 
to develop a Shortened Version of the Positive and Negative Syndrome Scale (PANSS). BMC 
Psychiatry, 11(1), 178. http://dx.doi.org/10.1186/1471-244X-11-178 

Khan, A., Lindenmayer, J. P., Opler, M., Kelley, M. E., White, L., Compton, M., … Harvey, P. 
D. (2014). The evolution of illness phases in schizophrenia: A non-parametric item response 
analysis of the positive and negative syndrome scale. Schizophrenia Research: Cognition, 1(2), 
53–89. http://dx.doi.org/10.1016/j.scog.2014.01.002 

Kuijpers, R. E., van der Ark, L. A., & Croon, M. A. (2013). Standard errors and confidence intervals 
for scalability coefficients in Mokken scale analysis using marginal models. Sociological 
Methodology, 43(1), 42–69. http://dx.doi.org/10.1177/0081175013481958 

Kogar, H. (2015). Madde tepki kuramına ait parametrelerin ve model uyumlarının karşılaştırılması: 
Bir Monte Carlo çalışması [Comparison of item parameters and model fit from item response 
theory applications: A Monte Carlo study]. Eğitimde ve Psikolojide Ölçme ve Değerlendirme 
Dergisi, 6(1), 142–157.

Laroche, M., Kim C., & Tomiuk, M. A. (1999). IRT based item level analysis: An additional 
diagnostic tool for scale purification. Advances in Consumer Research, 26(1), 141–149.

Lee, Y. S. (2007). A comparison of methods for nonparametric estimation of item characteristic 
curves for binary items. Applied Psychological Measurement, 31(2), 121–134. http://dx.doi.
org/10.1177/0146621606290248 

Lee, Y. S., Wollack, J. A., & Douglas, J. (2009). On the use of nonparametric item characteristic 
curve estimation techniques for checking parametric model fit. Educational and Psychological 
Measurement, 69(2), 181–197. http://dx.doi.org/10.1177/0013164408322026 

Liang, T., Wells, C. S., & Hambleton, R. K. (2014). An assessment of nonparametric approach for 
evaluating the fit of item response models. Journal of Educational Measurement, 51(1), 1–17. 
http://dx.doi.org/10.1111/jedm.12031 



512

EDUCATIONAL SCIENCES: THEORY & PRACTICE

Meijer, R. R. (2004). Investigating the quality of items in cat using nonparametric IRT (Law School 
Admission Council Computerized Testing Report). A Publication of the Law School Admission 
Council.

Meijer, R. R., & Baneke, J. J. (2004). Analyzing psychopathology items: A case for nonparametric 
item response theory modeling. Psychological Methods, 9(3), 354–368. http://dx.doi.
org/10.1037/1082-989X.9.3.354 

Meijer, R. R., Tendeiro, J. N., & Wanders, R. B. K. (2015). The use of nonparametric item response 
theory to explore data quality. In S. P. Reise & D. A. Revicki (Eds.), Handbook of item response 
theory modeling applications to typical performance assessment (pp. 85–110). New York, NY: 
Taylor & Francis.

Mokken, R. J. (1971). A theory and procedure of scale analysis: With applications in political 
research. The Hague, Berlin: Mouton.

Mokken, R. J. (1997). Nonparametric models for dichotomous responses. In W. J. van der Linden & 
R. K. Hambleton (Eds.), Handbook of modern item response theory (pp. 351–368). New York, 
NY: Springer-Verlag.

Molenaar, I. W. (2001). Thirty years of nonparametric item response theory. Applied Psychological 
Measurement, 25(3), 295–299. http://dx.doi.org/10.1177/01466210122032091 

Olivares, A. M. (2005). Further empirical results on parametric versus non-parametric IRT 
modeling of Likert-type personality data. Multivariate Behavioral Research, 40(2), 261–279. 
http://dx.doi.org/10.1207/s15327906 mbr4002_5 

Ostini, R., & Nering, M. L. (2006). Polytomous item response theory models. Thousand Oaks, CA: 
Sage.

Palm, K. M., & Strong, D. R. (2007). Using item response theory to examine the white bear 
suppression inventory. Personality and Individual Differences, 42(1), 87–98. http://dx.doi.
org/10.1016/j.paid.2006.06.023 

Patsula, N. L., & Gessaroli, E. M. (April, 1995). A comparison of item parameter estimates and 
ICCS produced with Testgraf and Bilog under different test lengths and sample sizes. Paper 
presented at the Annual Meeting of the National Council on Measurement in Education, San 
Francisco, CA. 

Pope, G. A. (1997). Nonparametric item response modeling and gender Differential Item 
Functioning (DIF) analysis of the Eysenck personality questionnaire (Master’s Thesis). 
Available from ProQuest Dissertations and Theses database. (UMI No. MQ80491)

Pozehl, J. B. (1990). Application of item response theory to criterion-referenced measurement: 
An investigation of the effects of model choice, sample size, and test length on reliability and 
estimation accuracy (Doctoral Dissertation). Available from ProQuest Dissertations and Theses 
database. (UMI No. 9030146)

Ramsay, J. O. (1991). Kernel smoothing approaches to nonparametric item characteristic curve 
estimation. Psychometrika, 56(4), 611–630.

Ramsay, J. O. (2000). TestGraf a program for the graphical analysis of multiple choice test and 
questionnaire data (Unpublished manuscript). McGill University. Retrieved from  http://www.
psych.mcgill.ca/faculty/ramsay/ramsay.html

Reeve, B. B., & Fayers, P. (2005). Applying item response theory modeling for evaluating 
questionnaire item and scale properties. In P. Fayers & R. D. Hays (Eds.), Assessing quality of 
life in clinical trials: Methods of practice (pp. 55–73). Oxford, NY: Oxford University Press.



513

Sengul Avsar, Tavsancil / Examination of Polytomous Items’ Psychometric Properties According to Nonparametric Item...

Rivas, T., Bersabé, R., & Berrocal, C. (2005). Application of double monotonicity model to 
polytomous items: Scalability of the beck depression items on subjects with eating disorders. 
European Journal of Psychological Assessment, 21(1), 1–10. http://dx.doi.org/10.1027//1015-
5759.21.1.1 

Roosen, K. (2009). Development of the Sensitivity to Pain Traumatization Scale (SPTS) 
using item response theory analysis (Master’s Thesis). Available from ProQuest Dissertations 
and Theses database. (UMI No. MR53817)

Sachs, J., Law, Y. K., & Chan, C. K. K. (2003). A nonparametric item analysis of a selected item 
subset of the learning process. British Journal of Educational Psychology, 73(3), 395–423. 
http://dx.doi.org/10.1348/000709903322275902 

Santor, A. D., Ascher Svanum, H., Lindenmayer, J. P., & Obenchain, R. (2007). Item response 
analysis of the positive and negative syndrome scale. BMC Psychiatry, 7(1), 66. http://dx.doi.
org/10.1186/1471-244X-7-66 

Sijtsma, K., Debets, P., & Molenaar, W. I. (1990). Mokken scale analysis for polychotomous items: 
Theory, a computer program and an empirical application. Netherlands: Quality and Quantity, 
Kluwer Academic Publishers.

Sijtsma, K., & Molenaar, I. W. (1987). Reliability of test scores in nonparametric item response 
theory. Psychometrika, 52(1), 79–97.

Sijtsma, K., & Molenaar, I. W. (2002). Introduction to nonparametric item response theory. New 
York, NY: Sage.

Sijtsma, K. (2005). Nonparametric item response theory models. In K. Kempf-Leonard (Ed.), 
Encyclopedia of social measurement (pp. 875–882). New York, NY: Elsevier.

Sijtsma, K., Emons, W. H., Bouwmeester, S., Nyklícek, I., & Roorda, L. D. (2008). Nonparametric 
IRT analysis of quality of life scales and its application to the world health organization quality 
of life scale (Whoqol-Bref). Quality of Life Research: An International Journal of Quality of 
Life Aspects of Treatment, Care and Rehabilitation, 17(2), 275–290. http://dx.doi.org/10.1007/
s11136-007-9281-6 

Smits, I. A. M., Timmerman, M. E., & Meijer, R. R. (2012). Exploratory Mokken Scale analysis 
as a dimensionality assessment tool: Why scalability does not imply unidimensionality. Applied 
Psychological Measurement, 36(6), 516–539. http://dx.doi.org/10.1177/0146621612451050 

Sodano, S. M., & Tracey, T. J. G. (2011). A brief inventory of interpersonal problems-circumplex 
using non-parametric item response theory: Introducing the IIP-C-IRT. Journal of Personality 
Assessment, 93(1), 62–75. http://dx.doi.org/10.1080/00223891.2010.528482 

Sodano, S. M., Tracey, T. J. G., & Hafkenscheid, A. (2014). A brief Dutch language Impact 
Message Inventory-Circumplex (IMI-C SHORT) using non-parametric item response theory. 
Psychotherapy Research, 24(5), 616–628. http://dx.doi.org/10.1080/10503307.2013.847984 

Stewart, M. E., Watson, R., Clark, A. I., Ebmeier, K. P., & Deary, I. J. (2010). A hierarchy of 
happiness? Mokken scaling analysis of the oxford happiness inventory. Personality and 
Individual Differences, 48(7), 845–848. http://dx.doi.org/10.1016/j.paid.2010.02.011    

Stout, W. (2001). Nonparametric item response theory: A maturing and applicable measurement 
modeling approach. Applied Psychological Measurement, 25(3), 300–306. http://dx.doi.
org/10.1177/01466210122032109 

Štochl, J. (2007). Nonparametric extension of item response theory models and its usefulness for 
assessment of dimensionality of motor tests. Acta Universitatis Carolinae, 42(1), 75–94.



514

EDUCATIONAL SCIENCES: THEORY & PRACTICE

Štochl, J., Jones, P. B., & Croudace, J. T. (2012). Mokken scale analysis of mental health and 
well-being questionnaire item responses: A non-parametric IRT method in empirical research 
for applied health researchers. MC Medical Research Methodology, 12(1), 74. http://dx.doi.
org/10.1186/1471-2288-12-74 

Straat, J. H., van der Ark, L. A., & Sijstma, K. (2014). Minimum sample size requirements for 
Mokken scale analysis. Educational and Psychological Measurement, 74(5), 809–822. http://
dx.doi.org/10.1177/0013164414529793 

Sueiro, M. J., & Abad, F. J. (2011). Assessing goodness of fit in item response theory with 
nonparametric models: A comparison of posterior probabilities and kernel smoothing 
approach. Educational and Psychological Measurement, 71(5), 834–848. http://dx.doi.
org/10.1177/0013164410393238 

Syu, J. J. (2013). Applying person fit-in faking detection-the simulation and practice of non 
parametric item response theory (Doctoral dissertation, National Chengchi University). 
Retrieved from http://nccur.lib.nccu.edu.tw/bitstream/140.119/5861/46/251501.pdf 

Tavsancil, E., & Aslan, E. (2001). İçerik analizi ve uygulama örnekleri [Content analyses and case 
studies]. İstanbul, Turkey: Epsilon Yayıncılık.

Valois, P., Frenette, E., Villeneuve, P., Sabourin, S., & Bordeleau, C. (2000). Nonparametric item 
analysis and confirmatory factorial validity of the Computer Attitude Scale for secondary students. 
Computers & Education, 35(4), 281–294. http://dx.doi.org/10.1016/S0360-1315(00)00042-7 

van Onna, M. J. H. (2004). Estimates of the sampling distribution of scalability coefficient h. Applied 
Psychological Measurement, 28(6), 427–449. http://dx.doi.org/10.1177/0146621604268735 

van der Ark, L. A. (2007). Mokken scale analysis in r. Journal of Statistical Software, 20(11), 1–19.

van der Ark, L. A. (2015). Package “Mokken.” Retrieved from http://cran.r project.org/web/
packages/mokken/mokken.pdf

van der Ark, L. A., van der Palm, D. W., & Sijtsma, K. (2011). A latent class approach to estimating 
test-score reliability. Applied Psychological Measurement, 35(5), 380–392. http://dx.doi.
org/10.1177/0146621610392911 

Wang, W. C. (2004). Direct estimation of correlation as a measure of association strength using 
multidimensional item response models. Educational and Psychological Measurement, 64(6), 
937–955. http://dx.doi.org/10.1177/0013164404268671 

Young, M. A., Blodgett, C., & Reardon, A. (2003). Measuring seasonality: Psychometric properties 
of the seasonal pattern assessment questionnaire and the inventory for seasonal variation. 
Psychiatry Research, 117(1), 75–83. http://dx.doi.org/10.1016/S0165-1781(02)00299-8 

Zenisky, A. L., Hambleton, R. K., & Sireci, S. G. (2002). Identification and evaluation of local 
item dependencies in the medical college admissions test. Journal of Educational Measurement, 
39(4), 291–309. http://dx.doi.org/10.1111/j.1745-3984.2002.tb01144.x 

Zhang, O. (2010). Polytomous irt or Testlet model: An evaluation of scoring models in small Testlet 
size situations (Master’s thesis, University of Florida). Retrieved from http://ufdc.ufl.edu/
UFE0042638/00001 

Zhou, Y. (2011). Comparing parametric item response theory and nonparametric item response 
theory: Applicatıon in psychological research using polytomous items (Doctoral Dissertation). 
Available from ProQuest Dissertations and Theses database. (UMI No. 3512338)


