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Abstract
We conducted a simulation study to explore the precision of test outcomes across computerized adaptive 
testing (CAT) and computerized adaptive multistage testing (ca-MST) when the number of different content 
areas was varied across a variety of test lengths. We compared one CAT and two ca-MST designs (1-3 and 
1-3-3 panel designs) across several manipulated conditions including total test length (24-item and 48-item 
test length) and number of controlled content areas. The five levels of the content area condition included 
zero (no content control), two, four, six and eight content area. We fully crossed all manipulated conditions 
within CAT and ca-MST with one another, and generated 4000 examinees from N (0,1). We fixed all other 
conditions such as IRT model, exposure rate across the CAT and ca-MSTs. Results indicated that test length 
and the type of test administration model impacted the outcomes more than the number of content area. 
The main finding was that regardless of any study condition, CAT outperformed the two ca-MSTs, and the 
two ca-MSTs were comparable. We discussed the results in connection to the control over test design, test 
content, cost effectiveness and item pool usage and provided recommendations for practitioner and also 
listed limitations for further research.
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Introduction to the Adaptive Testing
The most widely used test administration model to measure student success today 

is the paper-and-pencil form. In this testing approach, the exam is administered on 
paper, the same set of items are given to all examinees, and item order cannot change 
during the test (e.g., American College Testing-ACT). One of the big advantages of 
paper-and-pencil testing models is high test developer control on content. This means 
that prior to the test administration, for each subject (e.g., biology) practitioners can 
specify related content areas (e.g., photosynthesis, ecology, plants, human anatomy, 
animals) and the number of items needed within each content area. However, 
drawbacks to paper-and-pencil tests are test security (e.g., cheating) which is a serious 
threat for test validity and score reliability (Thompson, 2008), low measurement 
efficiency, delayed scoring, late reporting and long test length (Yan, von Davier, & 
Lewis, 2014). Due to these deficiencies, adaptive testing has been proposed for use. 

Another form of the test administration model is adaptive testing which is the main 
interest in this study. There are two versions of adaptive testing; computerized adaptive 
testing (CAT) and computerized adaptive multistage testing (ca-MST). In CAT (Weiss 
& Kingsbury, 1984), the test taker starts the exam with an item and then, depending 
on the performance on this item, the computer algorithm calculates his or her ability 
estimates, and selects the next question that contributes the most information about his 
or her current ability from the item pool. This process continues until the stopping rule 
is satisfied. The flowchart in Figure 1 visually displays working principle of CAT. 

1. Begin with an item

NO

YES

5. Terminate the test 
and calculate final 
latent score

2. Estimate latent score

3. Select another item 
based on current latent 
score

4. Re-estimate and 
update latent score

Figure 1. The flowchart of CAT.
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Second type of adaptive testing approach is computerized adaptive multistage 
testing (ca-MST). The ca-MST is comprised of different panels (e.g., a group of test 
forms), panels are comprised of different stages (e.g., division of a test), and stages 
are comprised of pre-constructed item sets at different difficulty levels called module 
(Luecht & Sireci, 2011). This means that at each stage some of the modules are easier 
and some of them are harder. In ca-MST, the test taker starts the test with a set of 
items (e.g., a set of 5 or 10 items) called routing module instead individual items. 
Depending on the performance on the routing module, the computer selects the next 
module in stage two that contributes the highest information about the test taker’s 
current ability. This process continues until the test taker completes all stages. For 
illustration purposes, Figure 2 shows an example of ca-MST design with multiple 
panels. This design is called 1-3 ca-MST panel design, and there is one module in 
stage one, there are three modules in stage two. This two stage design is the simplest 
and widely used in both operational applications (e.g., revised version of GRE). This 
is because there is only one adaptation point in this configuration but this property 
also brings it to the disadvantage of higher likelihood of routing error (Yan et al., 
2014). Armstrong, Jones, Koppel and Pashley (2004) and Patsula and Hambleton’s 
(1999) huge simulation studies displayed that having more than four stages does 
not produce meaningful gain in test outcomes, and two or three stages with two or 
three modules at each stage are sufficient for a ca-MST administration (Armstrong, 
Jones, Koppel, & Pashley, 2004; Patsula & Hambleton, 1999; Yan et al., 2014). This 
is more likely due to having more adaptation points. Generating multiple panels is 
important to reduce panel, module, and item exposure rate, and prevents items from 
being overused. This is critical for test security; otherwise, test cheating and item 
sharing problems will arise.

Figure 2. Illustration of multiple panels in ca-MST.
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It is very clear that the main distinction between CAT and ca-MST is that there is an 
item level adaptation in CAT in contrast to the module level adaptation in ca-MST. The 
ca-MST has some advantages over other the CAT. Perhaps, the most obvious advantage 
of ca-MST over CAT is that ca-MST is more flexible in terms of item review and item 
skipping. The ca-MST allows examinees to go back to the previous items within each 
module, and to skip any item as well. However, examinees are not allowed to go back 
to the previous stage(s), and review items in the previous module(s). 

Both CAT and ca-MST have multiple advantages over other administration models, 
such as immediate scoring, high measurement accuracy, low test length and high 
test security (Yan et al., 2014). However, one drawback to adaptive testing models 
is that unlike the paper-and-pencil tests it is not very easy to ensure all examinees 
are exposed to the same distribution of items in terms of content. This is extremely 
critical, especially in high stakes administrations (Huang, 1996), because unless the 
content distribution of items is the same across examinees, the test is essentially 
measuring different constructs for different persons. 

Connection of Content Control with Test Fairness and Validity
Validity was once defined as a feature of a test device or instrument, but more 

recently the views and perceptions towards validity have changed (Kane, 2010). 
Messick’s (1989) modern view on validity defines it as “integrated evaluative judgment 
of the degree to which empirical evidence and theoretical rationales support the 
adequacy and appropriateness of inferences and actions based on test scores or other 
modes of assessment” (Messick, 1989, p.13). His well-accepted definition implies 
that validity is a broad issue, and in order to assess it, multiple source of evidence are 
required. This has been echoed in several chapters in the Standards for Educational 
and Psychological Testing (American Educational Research Association [AERA], 
American Psychological Association [APA], & National Council Measurement in 
Education [NCME], 1999). These sources include evidential and consequential basis 
evidences. Messick (1989) states that one must use these evidences for two purposes: 
a) interpretation of test scores (i.e., describing someone’s test performance) and b) 
use of the test (i.e., making decisions based on the test performance). Although some 
still prefer the traditional taxonomy (e.g., construct validity, content validity, internal 
validity, external validity) (see Sireci, 2007), Messick argues validity is a unified 
concept, and that there is only one type of validity, which is construct validity, and all 
other types of validity are branched under it (Messick, 1989).

Construct validity refers to the degree to which a test instrument measures what it 
is supposed to measure (Cronbach, 1971). The essential goal of assessing construct 
validity is to cover all pieces of the construct of interest (e.g., critical thinking) 
as much as possible, and to show that there is no construct underrepresentation 
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or overrepresentation. Construct overrepresentation occurs when a test’s content 
measures more than what it intends to measure and that is irrelevant with the targeted 
construct of interest. Construct underrepresentation occurs when a test’s content misses 
some important pieces of the targeted construct of interest. This is where content 
control and construct validity interact. For example, a test that measures high school 
students’ general math ability must include test items from all related content areas 
as required by the use of and interpretation of the scores, such as algebra, fractions, 
arithmetic, story based problems, functions, calculus, trigonometry, geometry, and 
possibly more. If the test content lacks items from one or more of the required areas, 
the insufficient content coverage results in construct underrepresentation, and thereby 
negatively impacts construct validity. Consequently, this impacts the accuracy of 
measurement, interpretation of test scores, and thereby test fairness. 

Purpose of the Study
As stated before, paper-and-pencil tests have a unique advantage of high test 

designer control. Thus, it is easier to ensure that all examinees receive a sufficient 
number of test items from all content areas. In fact, in terms of this feature, they 
are even incomparable with other test administration models. In contrast, there 
is a disadvantage in adaptive tests because in adaptive tests examinees receive 
overlapping or non-overlapping test forms. Without proper algorithms for content 
balancing, the test might be terminated for a test taker before receiving items from 
all content areas. Thus, it requires more consideration and effort to ensure that each 
examinee receives equal and sufficient number of items from all content areas. To be 
able to fully control test fairness and measurement accuracy, and to draw valid score 
interpretations, more consideration should be given to the issue of content balancing 
requirements in adaptive testing administrations. 

Since adaptive tests have become popular, many statistical procedures (e.g., item 
selection rule, stopping rule, routing method) have been proposed and tested under 
a variety of conditions. Much research has been conducted on CAT including the 
proposal of new item selection methods (e.g., Barrada, Olea, Ponsoda, & Abad, 2008; 
Chang & Ying, 1996), stopping rules (e.g., Choi, Grady, & Dodd, 2010), and exposure 
control methods (e.g., Leung, Chang, & Hau, 2003; van der Linden & Chang, 2005). 
Researched areas of ca-MST include proposals for new routing methods (Luetch, 
2000; Thissen & Mislevy 2000), test assembly methods (Luetch, 2000; Luecht & 
Nungester, 1998), and stage and module specifications (Patsula, 1999). Furthermore, 
many comparison studies have been conducted to explore efficiency of CAT versus 
ca-MST in terms of different test outcomes (see Davis & Dodd, 2003; Hambleton 
& Xing, 2006; Luecht, Nungester, & Hadadi, 1996; Patsula, 1999). However, the 
main focus in the comparison studies was the statistical components of CAT and/
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or ca-MST, and little consideration has been given to the non-statistical aspects of 
adaptive tests such as content balancing control (Kingsbury & Zara, 1991). Since it is 
directly related to validity, score interpretation and test fairness, non-statistical issues 
of adaptive tests, such as content balancing, have not been given enough attention. 
The common findings in the literature was that due to the item-level adaptation and/
or more adaptation points, CAT produces better accuracy of ability estimation (Yan et 
al., 2014). However, it is consistently asserted in several studies that a major advantage 
of ca-MST is that it controls for content better than CAT (see Chuah, Drasgow, & 
Luecht, 2006; Linn, Rock, & Cleary, 1969; Mead, 2006; Patsula & Hambleton, 1999; 
Stark & Chernyshenko, 2006; van der Linden & Glas, 2000; Weiss & Betz, 1974; Yan 
et al., 2014). Yet, the literature does not contain a study that specifically compares 
CAT with ca-MST under varying levels of content constraints to verify this claim. It 
is obvious that due to the feature of test assembly, ca-MST can easily meet content 
constraints. However, it is still unknown what we lose by administering ca-MST 
versus CAT when the two are different in how they select items from the same item 
bank to meet varying levels of content control goals. This study aims to explore the 
precision of test outcomes across the CAT and ca-MST when the number of different 
content areas is varied across a variety of test lengths. The goal of this study is to 
compare CAT and ca-MST in terms of content balancing control. This study aims to 
explore and compare the accuracy of outcomes produced by these two adaptive test 
approaches when strict content balancing is required. The study seeks answers to the 
following research questions:

1. How will the test outcomes be impacted when number of content area and test length 
are varied within each testing model (e.g., CAT, 1-3 ca-MST, 1-3-3 ca-MST)? 

2. How will the test outcomes be impacted when number of content areas is varied 
under different panel designs (1-3 vs 1-3-3) and different test lengths (24-item and 
48-item test length) on the ca-MST?

3. How will the test outcomes be impacted on the CAT and ca-MST under the 
combination of the levels of test length and content area?

Methodology

Design Overview
In this study, we compared one CAT design and two ca-MST panel designs across 

several manipulated conditions. We simulated two different ca-MST panel designs: 
the 1-3 and the 1-3-3 structure panel designs, with panels and modules constructed by 
integer programming. The common manipulated conditions across CAT and ca-MST 
were test length with two levels and number of controlled content area with five levels. 
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We fully crossed all manipulated conditions within CAT and ca-MST with one another. 
This resulted in 2x5 = 10 CAT conditions (test length x content area), and 2x5x2 = 20 
ca-MST conditions (test length x content area x ca-MST design), for 30 total conditions. 
For each condition we performed 100 replications. For better comparability, we fixed 
the following features across CAT and ca- ca-MST administrations: exposure rate, 
item bank, item response theory (IRT) model, and ability estimation method. We 
detailed both varied and fixed conditions in following sections. 

Fixed Conditions
The item parameters used in this study were based on a real ACT math test as used in 

Luecht (1991) and Armstrong, Jones, Li and Wu (1996). The original item bank consisted 
of 480 multiple choice items from six content areas. We provided the item parameters and 
number of items from each content in the original item bank in Table 1. In order to better 
compare the 30 conditions, and to avoid differences in content difficulty across the two, 
four, six and eight content area conditions, we generated four additional item banks (e.g., 
item bank 1, item bank 2, item bank 3 and item bank 4). We used these four different item 
banks in both CAT and ca-MST simulations, each for different content conditions. For 
the two content conditions, we selected one relatively easy (Content 1) and one relatively 
hard content area (Content 6) from six available on the real ACT test (i.e., item bank 1). 
Under the four, six, and eight content conditions, we used the same sets of ACT items as 
in the two content condition, with multiple modules being developed from those sets. All 
conditions had an equal number of easy and hard content areas within each item bank to 
avoid content difficulty problems in the interpretations of the results.

Table 1
Item Parameters of Each Content Area in the Original Item Bank
Content Area a b c
(Number of items) Mean SD Mean SD Mean
Content 1 (n = 48) 1.015 .292 -.485 .465 .154 .044
Content 2 (n = 168) .911 .322 .131 .977 .160 .054
Content 3 (n = 24) 1.028 .328 .811 .778 .173 .059
Content 4 (n = 96) 1.120 .419 .689 .655 .167 .058
Content 5 (n = 96) 1.037 .356 .527 .650 .151 .062
Content 6 (n = 48) .911 .312 .475 .828 .163 .058

All item banks had 480 items each with an equal number of items from each content 
area. There were 240, 120, 80 and 60 items from each content area in item bank 1, 2, 3 and 
4 respectively. Under the no content control condition, we used item bank 1 but content 
ID’s were ignored. We provided the item parameters and number of items for each content 
area in item bank 1 in Table 2. Again, the properties of items in other item pools are the 
same except the number of content areas and number of items. We provided the total 
information functions for the four item banks in Figure 3. As expected and desired, the 
level of average item bank difficulty was very similar across the item banks.
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Table 2
Item Parameters of Each Content Area in Item Bank 1
Content Area a b c
(Number of items) Mean SD Mean SD Mean SD
Content 1 (=300) 1.015 .292 -.485 .465 .154 .044
Content 2 (=300) .911 .312 .475 .828 .163 .058

In this study, we simulated many conditions for equivalency across CAT and 
ca-MST. These similarities allowed us to compare different content conditions not 
only within CAT and ca-MST designs, but also across the CAT and ca-MST designs. 
First, we generated four thousand examinees from a normal distribution, N (0, 1). 
We re-generated the theta values that represent examinees for each replication, and 
used for CAT and two ca-MST simulations. Second, under a particular content area 
condition, we built ca-MST modules and panels for two different panel designs from 
the same item banks used for CAT simulations. Specifically, in the two, four, six 
and eight content ca-MST conditions, when building the modules and panels for 
both 1-3 and 1-3-3 panel designs, we used item bank 1, 2, 3 and 4, respectively. In 
both ca-MST and CAT, we used the 3PL IRT model (Birnbaum, 1968) to generate 
the item responses. Third, we set exposure rates equal across the CAT and ca-MST 
simulations. The maximum item level exposure rate in CAT simulations was 0.25. 
The four essentially parallel panels created in ca-MST designs also had an exposure 
rate of 0.25 is for a panel and for a module. In practice, only routing modules are seen 
by all examinees that are assigned to a panel, and the subsequent modules in each 
panel are seen by fewer examinees. Fourth, as the ability estimation method, we used 
the expected a posteriori (EAP) (Bock & Mislevy, 1982) with a prior distribution of 
N (0, 1) for both interim and final ability estimates across the CAT and ca-MST. We 

Figure 3. Total information functions for four item Banks.
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completed the whole simulation process for both CAT and ca-MST in R version 2.1.1 
(R Development Core Team, 2013). We used catR (Magis & Raiche, 2012) package 
for CAT simulations and wrote our own R code for ca-MST simulations. We detailed 
both varied conditions in CAT and ca-MST simulations in the following sections.

CAT Simulations
There were two varying conditions in the CAT design; test length with two levels 

and number of controlled content area with five levels. The two different levels of test 
length were 24-item and 48-item length as used in similar simulation studies (Zenisky, 
Hambleton, & Luecht, 2010). The five levels of content area condition included zero (e.g., 
no content control), two, four, six and eight content area. No content control means that 
students did not necessarily receive pre-specified number of items from each content area. 
For example, in a biology test, while one student might receive eight botany items, eight 
ecology items, eight organ systems items, another student might receive less balanced 
items from these content areas. In the two content condition, the target proportions for 
content 1 and 2 were 50% and 50%, and the corresponding number of items were 12, 
12 and 24, 24 for 24-item and 48-item test length conditions, respectively. In the four 
content condition, the target proportions for content 1, 2, 3 and 4 were 25% each, and 
the corresponding number of items were 6 and 12 for 24-item and 48-item test length 
conditions, respectively. In the six content condition, the target proportions for content 
1, 2, 3, 4, 5 and 6 were 16.6% each, and the corresponding number of items were 4 
and 8 for 24-item and 48-item test length conditions, respectively. In the eight content 
condition, the target proportions for content 1, 2, 3, 4, 5, 6, 7 and 8 were 12.5% each, 
and the corresponding number of items were 3 and 6 for 24-item and 48-item test length 
conditions, respectively. Under the no content control condition, students received a total 
of 24 and 48 items without ensuring number of items they received from each content 
area. We summarized the distribution of items across the contents areas and test lengths in 
CAT simulations in Table 3. The literature showed that in terms of measurement accuracy, 
the constrained-CAT (CCAT; Kingsbury & Zara, 1989) method produced very similar 
results with other content control methods (Leung et al., 2003). So, the CCAT method 
was used for content control procedure as also used in many real CAT applications 
(Bergstrom & Lunz, 1999; Kingsbury & Zara, 1991). This method tracks the proportion 
of administered items for all contents. Then, the next item is selected from the content 
area that has the lowest proportion of administered items (e.g., largest discrepancy from 
the target proportion). The Sympson-Hetter (Sympson & Hetter, 1985) method with a 
fixed value of ri = 0.25 was used for item exposure control.

Since the first theta estimate is calculated after responding to the first item, the initial 
theta is not known prior to the CAT administration. A typical approach to choosing the 
first item is to select an item of medium difficulty (i.e., b = 0), which was used in this 
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study. We used the maximum information method (Brown & Weiss, 1977) as the item 
selection rule. This method selects the next item that provides the highest information 
about his or her current theta estimate by satisfying the content constraints.

Table 3
Distribution of Items Across the Contents Areas and Test Lengths in CAT 
Test 
Length

Content 
Condition Content  Areas Target Proportions Corresponding 

Number of Items

24-
item 
CAT

Two Content C1,C2 50%,50% 12,12
Four Content C1,C2,C3,C4 25%,25%,25%25% 6,6,6,6

Six Content C1,C2,C3,C4,C5,C6
16.6%,16.6%,16.6%,
16.6%,16.6%,16.6% 4,4,4,4,4,4

Eight Content C1,C2,C3,C4,C5,C6,C7,C8
12.5%,12.5%,12.5%,12.5%,12.5%,1

2.5%,12.5%,12.5% 3,3,3,3,3,3,3,3

48-
item 
CAT

Two Content C1,C2 50%,50% 24,24
Four Content C1,C2,C3,C4 25%,25%,25%25% 12,12,12,12

Six Content C1,C2,C3,C4,C5,C6
16.6%,16.6%,16.6%,
16.6%,16.6%,16.6% 8,8,8,8,8,8

Eight Content C1,C2,C3,C4,C5,C6,C7,C8
12.5%,12.5%,12.5%,12.5%,12.5%,1

2.5%,12.5%,12.5% 6,6,6,6,6,6,6,6

Ca-MST Simulations
We built two different ca-MST designs, the 1-3 structure design (e.g., two stage 

test) and the 1-3-3 structure design (e.g., three stage test). In any particular content 
area condition, all modules at any stage had the same number of items. In the 1-3 
panel design, there were 12 and 24 items per module under 24-item and 48-item 
test length conditions, respectively. In the 1-3-3 panel design, there were 8 and 16 
items per module under 24-item and 48-item test length conditions, respectively. 
Table 4 and 5 shows the distribution of items across the content areas in each module 
for 24-item and 48-item test length conditions, respectively. When the content was 
not controlled, the number of items in each module was the same under the stated 
conditions but the proportions across the content areas given in Table 4 and Table 5 
were not necessarily met.

Previous research has shown that there are only slight differences between routing 
methods (Weissman, Belov, & Armstrong, 2007). In order to maximize the similarities 
between CAT and ca-MST, we selected the maximum information method (Lord, 1980) as 
the routing strategy because it can be similarly applied in both types of test administrations.

Test assembly. In both 1-3 and 1-3-3 ca-MST designs, we generated four non-
overlapping essentially parallel panels from item bank 1, 2, 3 and 4. Creating multiple 
panels in ca-MST aimed to hold the maximum panel, module, and item exposure 
rates comparable to the CAT simulations. We used IBM CPLEX (ILOG, Inc., 2006) 
to create panels and modules. First, we clustered items into different modules, then 
randomly assigned modules to the panels. As shown in Luecht (1998), the automated 



1769

Sari, Huggins-Manley / Examining Content Control in Adaptive Tests: Computerized Adaptive Testing...

test assembly finds a solution to maximize the IRT information function at a fixed 
theta point. Let denote θ0 is the fixed theta point, and suppose we want a total of 24-
item in the test. We first define a binary decision variable, xi, (e.g., xi = 0 means item i 
is not selected from the item bank, xi = 1 means item i is selected from the item bank). 
The information function we want maximize is;

where ξi represents the item parameters of item i (e.g., a, b, c parameters). Let’s 
say we have two content areas (e.g., C1 and C2), and want to select an equal number 
of items (e.g., 12 items) from each content area. The automated test assembly is 
modeled to maximize 

which put constraints on C1, C2, the total test length, and the range of decision 
variables, respectively. The test assembly models under other conditions (e.g., 48-item 
test length, six content area) can be modeled similarly. When we did not control content 
balancing, we removed the constraints on the contents from the test assembly model.

In all conditions, the three fixed theta scores were as θ1 = -1, θ2 = 0, θ3 = 1, which 
represent the target information functions for easy, medium and hard modules, 
respectively. In both panel designs, we chose the items in routing modules from 

Table 4
The Distribution of Items in Modules in Ca-MST Across the Content Areas under 24-Item Test Length

Content 
Condition Content Area Routing Modules Stage 2 

Modules
Stage 3 

Modules Total

1-3 
Panel
Design

Two Content C1,C2 6,6 6,6 - 24
Four Content C1,C2,C3,C4 3,3,3,3 3,3,3,3 - 24
Six Content C1,C2,C3,C4,C5,C6 2,2,2,2,2,2 2,2,2,2,2,2 - 24
Eight Content C1,C2,C3,C4,C5,C6,C7,C8 2,2,2,2,1,1,1,1 1,1,1,1,2,2,2,2 - 24

1-3-3 
Panel
Design

Two Content C1,C2 4,4 4,4 4,4 24
Four Content C1,C2,C3,C4 2,2,2,2 2,2,2,2 2,2,2,2 24
Six Content C1,C2,C3,C4,C5,C6 2,2,1,1,1,1 1,1,2,2,1,1 1,1,1,1,2,2 24
Eight Content C1,C2,C3,C4,C5,C6,C7,C8 1,1,1,1,1,1,1,1 1,1,1,1,1,1,1,1 1,1,1,1,1,1,1,1 24
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medium difficulty items (e.g., items that maximize information function at theta point 
of 0). In the 1-3 panel design, there were two medium modules, one easy and one 
hard module in each panel. In the 1-3-3 panel design, there were two easy, three 
medium and two hard modules in each panel..

Table 5
The Distribution of Items in Modules In Ca-MSTs Across the Content Areas in under 48-Item Test Length

Content 
Condition

Content Area Routing Modules Stage 2 
Modules

Stage 3 
Modules

Total

1-3 
Panel
Design

Two Content C1,C2 12,12 12,12 - 48
Four Content C1,C2,C3,C4 6,6,6,6 6,6,6,6 - 48
Six Content C1,C2,C3,C4,C5,C6 4,4,4,4,4,4 4,4,4,4,4,4 - 48
Eight Content C1,C2,C3,C4,C5,C6,C7,C8 3,3,3,3,3,3,3,3 3,3,3,3,3,3,3,3 - 48

1-3-3 
Panel
Design

Two Content C1,C2 8,8 8,8 8,8 48
Four Content C1,C2,C3,C4 4,4,4,4 4,4,4,4 4,4,4,4 48
Six Content C1,C2,C3,C4,C5,C6 4,4,2,2,2,2 2,2,4,4,2,2 2,2,2,2,4,4 48
Eight Content C1,C2,C3,C4,C5,C6,C7,C8 2,2,2,2,2,2,2,2 2,2,2,2,2,2,2,2 2,2,2,2,2,2,2,2 48

Evaluation Criteria
We evaluated the results of the simulation with two set of statistics: (a) overall 

results, (b) conditional result as evaluated in similar studies (see Han & Guo, 2014; 
Zenisky, 2004). For overall statistics, we computed mean bias, root mean squared 
error (RMSE), and correlation between estimated and true theta from the 
simulation results as illustrated below.

Let N denote the total number of examinees, the estimated theta score for person j, 
and  the true theta score for person j. Mean bias was computed as

where and are the standard deviations for the estimated and true theta 
values, respectively. In any particular condition in CAT and ca-MST simulations, 
we calculated each overall statistic separately for each iteration across the 4,000 
examinees, and then averaged across 100 replications. In addition, we conducted 
factorial ANOVA procedures to examine the statistically significant and moderately 
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to large sized patterns among the simulation factors on these three outcomes. We 
did this separately for each outcome with the three study factors (e.g., type of test 
administration- CAT vs 1-3 ca-MST vs 1-3-3 ca-MST, test length and number of 
content area) as fully crossed independent variables. 

For conditional result, we calculated conditional standard error of measurement 
(CSEM) and observed between θ =-2 and θ=2, and the width of the θ interval was 0.2. 
CSEM for a theta point was computed as

It should be noted that the CSEM is the inverse of the square root of total test 
information at an estimated theta point.

Results
The first section of the results describes the overall findings (e.g., mean bias, 

RMSE, correlations between the estimated and true theta values), and the second 
section describes the conditional result (e.g., CSEM). 

Overall Results
Mean bias. We presented the results of mean bias across the conditions in Table 

6. To assess for statistically significant patterns, we conducted a factorial ANOVA 
with mean bias as the outcome and the three study factors (e.g., test administration 
model, test length, number of content area) as the independent variables. The results 
for factorial ANOVA are in Table 7. 

The main effect of test administration explained the largest proportion of mean 
bias variance (η2 = .17), controlling for all other factors. The interactions or other 
main effects were either non-significant or explained very small proportion of 
variance. We displayed a graphical depiction of the main effect of test administration 
within each level of test length on the mean bias in Figure 4. The main finding was 
that regardless of the number of content area and test length, CAT produced lower 
amount of mean bias than the two ca-MTS’s, which caused the main effect of test 

Table 6
Results of Mean Bias Across the Conditions
Design Test Length No Control 2 Content 4 Content 6 Content 8 Content
1-3 ca-MST 24-item 0.07 0.07 0.05 0.05 0.06
1-3 ca-MST 48-item 0.06 0.07 0.06 0.07 0.07
1-3-3 ca-MST 24-item 0.06 0.05 0.06 0.05 0.07
1-3-3 ca-MST 48-item 0.08 0.05 0.05 0.04 0.06
CAT 24-item 0.009 0.009 0.009 0.009 -0.008
CAT 48-item -0.008 0.007 -0.008 0.008 0.007
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administration. Another finding was that the 1-3 and the 1-3-3 panel designs resulted 
in very similar mean bias. However, the test length did not impact the mean bias 
across the conditions.

Table 7
Factorial ANOVA Findings When Dependent Variable Was Mean Bias
Dependent Variable p η2

Test Administration x Number of Content x Test Length .15 .00
Test Administration x Number of Content .04 .00
Test Administration x Test Length .22 .00
Number of Content x Test Length .25 .00
Test Administration .00 .17
Number of Content Areas .05 .00
Test Length .61 .00

Figure 4. Main effect of Test Administration Model on Mean Bias within Levels of Test Lenghth.

Root mean square error. We presented the results of RMSE across the 
conditions in Table 8. To assess for statistically significant patterns, we conducted 
a factorial ANOVA with RMSE as the outcome and the three study factors (e.g., 
test administration model, test length, number of content area) as the independent 
variables. The results for factorial ANOVA are in Table 9. 

The interaction of test administration model and test length explained a meaningful 
proportion of RMSE variance (η2 = .05), as did the main effect of test length (η2 = .18). 
We displayed a graphical depiction of the interaction of test administration model and 
test length within each level of number of content area on the RMSE in Figure 5. The 
main finding was that regardless of the number of content area and test administration 
model, as the test length increased, the amount of RMSE decreased. Also, the decrease 
in RMSE associated with the increase in test length was almost always more obvious 
for CAT, which caused the significant two way interaction of test administration and 
test length. The varying ca-MST panel designs did not impact the amount of RMSE 
within each level of test length as well as the number of content area.
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Table 8
Results of RMSE Across the Conditions
Design Test Length No Control 2 Content 4 Content 6 Content 8 Content
1-3 ca-MST 24-item 0.33 0.33 0.35 0.33 0.34
1-3 ca-MST 48-item 0.30 0.30 0.31 0.31 0.30
1-3-3 ca-MST 24-item 0.32 0.32 0.33 0.34 0.34
1-3-3 ca-MST 48-item 0.30 0.31 0.31 0.31 0.31
CAT 24-item 0.35 0.36 0.36 0.37 0.36
CAT 48-item 0.28 0.29 0.29 0.28 0.29

Table 9
Factorial ANOVA Findings When Dependent Variable Was RMSE
Dependent Variable p η2

Test Administration x Number of Content x Test Length .04 .00
Test Administration x Number of Content .48 .00
Test Administration x Test Length .00 .05
Number of Content x Test Length .38 .00
Test Administration .06 .00
Number of Content Areas .00 .02
Test Length .00 .18

Correlation. We presented the results of correlation between the true and estimated 
theta values across the conditions were in Table 10. To assess for statistically significant 
patterns, we conducted a factorial ANOVA with correlation as the outcome and the 
three study factors (e.g., test administration model, test length, number of content 
area) as the independent variables. The results for factorial ANOVA are in Table 11. 

Figure 5. Interaction of Test Administration Model and Test Length on RMSE within Levels of Number of Content.
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The main effect of test administration and test length explained the largest proportion 
of correlation variance (η2=.35), controlling for all other factors. The interactions or 
other main effects were either non-significant or explained very small proportion of 
variance. Figure 6 displays a graphical depiction of the main effect of test administration 
model within each level of test length on the correlations. The main finding was that 
regardless of the number of content area and test administration model, as the test 
length increased, correlation between the true and estimated thetas increased, which 
caused significant main effect of test length. Another main finding was that regardless 
of the number of content area and test length, the correlations were always lower under 
CAT, which caused significant main effect of test administration model. However, the 
number of content area did not impact the correlations. The varying ca-MST panel 
designs did not impact the correlations within each level of test length as well.

Table 10
Correlation Coefficients between True and Estimated Thetas Across the Conditions
Design Test Length No Control 2 Content 4 Content 6 Content 8 Content
1-3 ca-MST 24-item 0.95 0.95 0.95 0.95 0.95
1-3 ca-MST 48-item 0.97 0.97 0.97 0.97 0.97
1-3-3 ca-MST 24-item 0.96 0.95 0.95 0.95 0.95
1-3-3 ca-MST 48-item 0.97 0.97 0.97 0.97 0.97
CAT 24-item 0.93 0.93 0.93 0.92 0.93
CAT 48-item 0.95 0.95 0.95 0.95 0.95

Table 11
Factorial ANOVA Findings When Dependent Variable Was Correlation
Dependent Variable p η2

Test Administration x Number of Content x Test Length .12 .00
Test Administration x Number of Content .04 .00
Test Administration x Test Length .00 .02
Number of Content x Test Length .00 .00
Test Administration .00 .35
Number of Content Areas .00 .00
Test Length .00 .35

Conditional Result
Conditional standard error of measurement. We displayed the results of 

standard error of measurement conditioned on the estimated theta values across the 
two different test lengths and three different test designs in Figure 7. First finding 
was that standard error of measurements were always lowest around θ = 0 point 
within any condition. Second finding was that as the test length increased standard 
error of measurements throughout the estimated theta points decreased for all test 
administration models. Third finding was that standard error of measurements for the 
two ca-MST conditions were more stable (more consistent) than CAT, regardless of 
the test length. Fourth finding was that even though the fluctuations were greater for 
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CAT, CAT resulted in lower standard error of measurements throughout the estimated 
theta points. However, the number of content area did not substantially impact the 
standard error of measurements within a particular condition, and the interpretations 
were always similar across the number of content area conditions (see Figure 7).

Discussion and Limitations
Large scale tests in educational and psychological measurement are constructed to 

measure student ability using items from different content areas related to the construct 
of interest. This is a requirement for a validity because the degree of validity is related 
to showing that test content aligns with the purpose of the use of the test and any 
decisions based on test scores (Luecht, de Champlain, & Nungester, 1998). This means 
that a lack of test content from one or more areas severely impacts validity. It is well 
known that even if score precision is very high as would be the case through proper 
adaptive algorithms in CAT or ca-MST, this does not necessarily ensure that the test 
has valid uses (Crocker & Algina, 1986). For example, high score precision might not 
represent the intended construct if the content balancing in not ensured. Furthermore, 
if all students are not tested on all aspects of the construct of interest, test fairness is 
jeopardized. For these reasons, any test form adapted to an examinee has to cover all 
related and required sub-content areas for validity and fairness purposes.

The main purpose of this study was to explore the precision of test outcomes across 
computerized adaptive testing and computerized adaptive multistage testing when 
the number of different content areas was varied across the different test lengths. It 
was important to examine this because content balancing and content alignment is a 
requirement for validity of score-based inferences (Messick, 1989; Wise, Kingsbury, 
& Webb, 2015). In real applications, item pools most often have items from multiple 
content areas, and dealing with content control might not be easy in adaptive testing 

Figure 6. Main effect of test administration model on correlation within levels of test length.
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(Wise et al., 2015). However, the consequences of not ensuring content balancing 
can have potential negative effects on the test use and score interpretations. Hence, 
this study added to the literature on content control in adaptive testing and, more 
specifically, aimed to provide guidelines about the relative strengths and weaknesses 
of ca-MST as compared to CAT with respect to content control.

The results showed that in terms of mean bias in theta estimates, CAT produced 
slightly better results than two ca-MSTs. This was the only meaningful finding, and 
other study factors did not have a substantial impact on the mean bias (see Table 6 
and Figure 4). In terms of RMSE of theta estimates, only test length had a meaningful 
impact on the outcome (see Table 8); increasing test length improved the outcome (see 
Figure 5). In terms of correlations between the true and estimated theta values, both 
test length and type of test administration played an important role on the outcome (see 
Table 10). The two ca-MSTs produced very comparable results and outperformed CAT. 
Furthermore, increasing test length improved the correlation (see Figure 6). However, it 
is important to note that low correlations do not necessarily indicate that the results are 
poorer for CAT. As is seen in Figure 7, the instability in the conditional standard error 
of measurement was greater for CAT than for the two ca-MSTs. This was the reason 
behind the lower correlations between true and estimated theta under CAT. Even if the 
two ca-MSTs provided more stable standard error of measurements across the different 
theta values, CAT produced lower standard error of measurements than the two ca-
MSTs (see Figure 7). The effect of test length was more obvious when the standard 
error of measurement was plotted against the theta values (see Figure 7).

This study did not find any evidence of the effect of number of content areas on both 
CAT and ca-MSTs. Increasing the number of controlled content areas or having no 
control over content did not meaningfully affect any of the study outcomes. All three 
test administration models were able to find items which provide the most information 
from different content areas, regardless of the number of content conditions. For 
practitioners and researchers, this is an indication that the studied CAT and ca-MST 
methods are not unduly influenced by the number of content areas one might have 
on a test. Thus, this is a positive finding for practitioners and researchers as CAT or 
ca-MST designers do not need to consider the number of content areas when concern 
is related to accuracy in theta estimation.

This study found that there was no meaningful difference on the outcomes between 
the two ca-MST panel designs, but CAT outperformed the ca-MSTs under many 
conditions. This study however does not argue against ca-MSTs. While the following 
considerations that we discuss are outside of the primary purpose of this study, it must be 
noted that ca-MSTs can have several practical advantages in operational testing. First, 
due to the features of test assembly, even if measurement precision is lower in ca-MSTs 
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then CAT, all other parameters being equal, the ca-MST allows greater control over test 
design and content. The ca-MST designers can determine item and content order within 
modules. There is however no expert control over relative item order in CAT. Second, 
since items in the modules are placed by the test developer prior to the administration, 
ca-MST allows for strict adherence to content specification, no matter how complex it is 
(Yan et al., 2014). However, in CAT, content misspecifications are more likely to occur 
(see Leung et al., 2003). Third, ca-MST allows adding other constraints on placing items 
into the modules, such as item length and format. This means that the length of items in 
different modules and panels can easily be controlled in ca-MST. Fourth, ca-MST uses 
a higher percentage of an item pool as compared to CAT, all else being equal. In the 
1-3 ca-MST condition, item pool usage rates were 40% and 80% under 24 and 48-item 
test lengths, respectively. In the 1-3-3 ca-MST condition, item pool usage rates were 
46.6% and 93.3% under 24 and 48-item test lengths, respectively. However, pool usage 
rates for CAT were about 36% and 64% under 24 and 48-item test lengths, respectively. 
Fifth, ca-MST can have advantages for issues related to item retirement. The cost for a 
single item on a standardized test varies from $1,500 to $2,500 (Rudner, 2009). Having 
less retired items is desired because researchers and practitioners do not want to throw 
many items away after each administration. In ca-MST, only the items in the routing 
modules reach the pre-specified maximum control rate, and are then retired for use. 
In 1-3 ca-MST, the number of items with maximum exposure rates were 48 (e.g., 12 
items per a routing module in a panel x 4 different panels) and 96 (e.g., 24 items per a 
routing module in a panel x 4 different panels) under 24 and 48-item length conditions, 
respectively. In 1-3-3 ca-MST, the number of items with maximum exposure rates were 
32 (e.g., 8 items per a routing module in a panel x 4 different panels) and 64 (e.g., 16 
items per a routing module in a panel x 4 different panels) under 24 and 48-item length 
conditions, respectively. In CAT, the number of items with maximum exposure rates 
were 47 and 105 under 24 and 48-item length conditions, respectively. Apparently, the 
1-3-3 ca-MST resulted in the lowest number of items with maximum exposure rate. 
As a result, fewer items would have to be retired in operational practice. In fact, this 
number could be further reduced by placing less items into the routing modules, and 
thus more items can be saved for future administrations. This characteristic is another 
advantage of ca-MST over CAT. Further research can investigate item pool utilization 
under varying conditions such as item bank size, quality of item bank, different ca-MST 
panel designs and varying level of number of items in the routing module. 

It is important to note that the content itself cannot be generated in a simulation study. 
Rather, item parameters are generated and used to represent different content areas. In 
this study, we defined a content area as a group of items, which belong to a specific sub-
curriculum of the test, such as fractions, algebra or calculus. We justified this due to an 
alignment to operational parameter estimates from the ACT. However, when generating 
these content areas, we used a particular range of item parameters to represent such sub-
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curriculum sections of the test. This process has limitations, but is similar to approaches 
in other similar simulation studies (see Armstrong et al., 1996; Luecht, 1991).

This study argues that although ca-MST allows greater flexibility over the content 
ordering, there was a reduction in measurement efficiency. This is not surprising 
because of the less frequent number of adaptation points as compared to CAT. In 
ca-MST, the number of adaptation points is associated with the number of stages 
(e.g., one minus number of stages), whereas it is associated with number of items in 
CAT (e.g., one minus number of items). For example, in the 1-3 and 1-3-3 ca-MST 
panel designs, there was one and two adaptation points regardless of the test length, 
respectively. In CAT, there were 23 and 47 adaptation points under 24 and 48-item 
test length conditions, respectively. 

In this study, we set the test length equal across the CAT and ca-MST simulations 
and investigated measurement accuracy as an outcome. However, measurement 
accuracy outcomes (e.g., standard error of measurement) are often used as stopping 
rules in CAT. In this study, ca-MST conditions were associated with a reduction in 
measurement accuracy as compared to CAT. However, if measurement accuracy were 
to be used as a stopping rule, we expect the outcomes to be quite different. It seems 
quite plausible that with this different type of stopping rule, CAT and ca-MST would 
have the same measurement accuracy outcomes but would differ in the test lengths 
needed to obtain those outcomes. In summary, the restriction of equal test length and 
the choice of stopping rule in this study had large impacts on the outcomes. Future 
studies may change and/or vary these conditions to explore outcomes across both test 
administration models. 

In order to give similar advantages to both CAT and ca-MSTs, we intentionally 
used maximum Fisher information method as an item selection and a routing method. 
However, this study can be improved by running the same simulation while adopting 
other item selections and routing methods. Additionally, in order to avoid content 
difficulty confounding, we systematically chose two content areas as one easy and 
one hard content area. However, in real applications this will not likely happen 
and test content might have wider and non-systematic ranges of difficulty within 
contents areas. We recommend the studied conditions to be tested with a real test 
administration that does not have systematic difficulty differences across content 
areas. In a particular number of content conditions, there were equal number of 
items from different content areas. This study should also be replicated with unequal 
content distributions.
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